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Abstract
On the path to decarbonization, batteries play an important role, as
they can help manage uncertainties associated with renewable en-
ergy sources such as PV. One of the main challenges of developing a
controller for home batteries is its scalability and transferability to
other households. In this paper, we propose a multi-source transfer
learning framework to scale a pretrained reinforcement learning
(RL)-based policy for controlling different unseen households. Our
proposed data-driven framework tackles two major disadvantages
of vanilla RL methods, i.e., data-intensive training and scalability.
In our proposed framework, initially, a global RL agent is trained
on multiple source households. Thereafter, the pretrained global
agent is finetuned on data from each target household to obtain an
individual RL controller for each. We assess the performance of our
proposed framework using real data from 100 Belgian households
with different load patterns and weather conditions. We bench-
mark our proposed framework against a rule-based baseline. The
results show that our finetuned controllers outperform the baseline
rule-based controller by ∼8%. Furthermore, compared to agents
trained locally from scratch, our finetuned agents require signif-
icantly fewer training episodes to learn a good control policy on
unseen, target households, validating the scalability of our proposed
framework.

CCS Concepts
• Computing methodologies→ Transfer learning; Reinforce-
ment learning; •Hardware→ Energy generation and storage.
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1 Introduction
Adopting solar PV systems and electrical heating, e.g., heat pumps,
can improve environmental sustainability and pave the way for
achieving net-zero carbon emissions. Yet, the intermittent nature
of PV production implies the need to integrate energy storage,
such as batteries. Controlling these batteries furthermore provides
flexibility to increase the self-consumption of households or reduce
their energy bill [3]. However, developing an optimal controller
for batteries in home energy management systems (HEMS) is a
challenging task due to the involvement of sequential decision-
making under uncertainties caused by PV generation and household
consumption.

In literature, different approaches have been used to design con-
trollers for a battery in HEMS, including rule-based control [2],
robust optimization [1], model predictive control [4], and reinforce-
ment learning (RL) [14]. Model-based optimization methods have
two major drawbacks: first, since these methods require system
models, the developed controllers are limited to that specific model
and are not easily transferable to other households. Second, because
of solving an optimization problem on-the-fly, they might suffer
from high computational time, which can make them inefficient
for real-time applications. Model-free RL methods overcome these
drawbacks, as they do not require system models. They learn a
(near-)optimal policy for an environment through a direct interac-
tion with the environment. Nevertheless, data-intensive training
and a lack of generalization are two major challenges when using
RL in practice [10]. RL methods face the sample efficiency issue, re-
quiring a large amount of observation and exploration for effective
training. Moreover, RL agents are capable of finding the optimal
policy but specifically for the environment they are trained on. This
means that for a new household, a new RL agent must be trained
from scratch.

Transfer learning can address the aforementioned challenges of
RL by efficiently reusing pretrained RL agents. The main idea of
transfer learning is to leverage knowledge from a source domain to
improve learning in a target domain that is different but related to
the source domain [11]. Using transfer learning for building control
and HEMS is an upcoming research area and only a few studies
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have been conducted on it [5, 8, 10, 13, 15]. However, most previous
works focused on either a single source household and a single
target household, or on the same source and target domains (for
instance, choosing a household as a target that has a similar load
profile to the source household).

In this paper, we aim to address this gap in literature and pro-
pose a multi-source transfer learning framework that efficiently
leverages data from a diverse set of source households to develop
RL controllers for new households. First, we train a global RL model
on multiple source households with the objective of reducing daily
energy cost. Next, we develop a specific agent for each target house-
hold by finetuning this pretrained global model on limited data from
that target household. We evaluate our proposed framework on
100 diverse Belgian households’ data from 5 different locations in
Belgium, where 90 households are considered as source households
and the rest as target households. Our main contributions are:

(1) Propose a multi-source transfer learning framework for de-
veloping RL-based controllers for home batteries to minimize
daily energy cost;

(2) Investigate the effect of using the pretrained global model
on training RL agents for unseen target households;

(3) Opensource our pretrained global model on HuggingFace1 to
allow other researchers to finetune their specific controllers.

2 Problem Formulation
2.1 MDP Formulation
The home energy management problem we consider is to minimize
the daily energy cost of households by controlling the (dis)charging
of their home battery. We formulate the problem as a Markov
decision process (MDP), which is a mathematical framework for
stochastic sequential decision-making problems. The problem is
modeled by a tuple (S,A,R,P, 𝛾), whereS denotes the state space,
A represents the (discrete) action space, R : S × A → R indicates
the reward function, P : S × S ×A → [0, 1] is the unknown state
transition probability distribution, and 𝛾 ∈ (0, 1] represents the
discount factor [12].

The state at each time step for each household is defined as

𝑠𝑡 = (𝑡, SOC𝑡 , 𝜋𝑡 , 𝑃PV𝑡 , 𝑃 load𝑡 , 𝑃HP𝑡 ) (1)

where 𝑡 is the hour of day, SOC𝑡 is the state of charge (SoC) of
battery at time 𝑡 , 𝜋𝑡 denotes the electricity price at time 𝑡 , 𝑃PV𝑡
is the PV generation of the household, 𝑃 load𝑡 represents the non-
flexible load consumption, and 𝑃HP𝑡 is the heat pump consumption2.

In this paper, we consider a discrete action space with 5 possible
actions, represented as

𝑎𝑡 ∈ A, A = {−𝑃max,−
𝑃max
2

, 0,
𝑃max
2

, 𝑃max} (2)

where 𝑃max is the maximum (dis-)charging power of the battery
and negative 𝑎𝑡 means discharging the battery. In this paper, the
decision-making time resolution is 1 hour.

Since the RL agent tries to maximize the cumulative reward, the
reward function is formulated as the negative of the energy cost,
1https://huggingface.co/soki95/global-model-for-home-battery-controller
2We separate the heat pump consumption from load consumption, as heat pumps are
controllable assets. We assume that these heat pumps are controlled by their internal
logic, reserving RL-based control for heat pumps as future work.

as shown below.

𝑟𝑡 =

{
−𝑃agg𝑡 𝜋

buy
𝑡 : 𝑃agg𝑡 > 0

−𝑃agg𝑡 𝜋
inj
𝑡 : 𝑃agg𝑡 ≤ 0

(3)

𝑃
agg
𝑡 = 𝑃 load𝑡 + 𝑃HP𝑡 + 𝑎𝑡 − 𝑃PV𝑡 (4)

We assume that households are exposed to Belgian dynamic day-
ahead prices for their consumption. Also, we consider the injection
price to be one-fourth of the day-ahead prices, i.e., 𝜋 inj𝑡 = 0.25𝜋buy𝑡 ,
which is roughly representative of the injection price in Belgium.

In the MDP framework, a state transition probability function
P models system dynamics. Part of the household dynamics, re-
lated to the battery dynamics, can be explicitly formulated. We
use a linear model of a 2kW/ 10kWh battery with 90% round-trip
efficiency, similar to [6]. However, besides the battery’s SoC, the
transition function is generally unknown because it depends on
stochasticities such as weather, PV generation, and non-flexible
household demand. The agent implicitly learns this transition func-
tion through interaction with the environment.

2.2 Deep Q Learning
An RL method is used to solve the formulated MDP problem. In this
paper, we focus on deep Q learning (DQN) [9], which estimates a Q-
function using a deep neural network. The following loss function
is minimized to learn the Q-function 𝑄𝜃 (𝑠𝑡 , 𝑎𝑡 ):

𝐿 = E(𝑠𝑡 ,𝑎𝑡 ,𝑟𝑡 ,𝑠t+1 )∼D
[
(𝑟𝑡 + 𝛾 max

𝑎
𝑄𝜃 ′ (𝑠t+1, 𝑎) −𝑄𝜃 (𝑠𝑡 , 𝑎𝑡 ))2

]
(5)

For stability in learning, next state-action values in Eq. (5) are
calculated based on the target Q-function 𝑄𝜃 ′ (𝑠𝑡 , 𝑎𝑡 ), where 𝜃 ′ =
𝜏𝜃 + (1−𝜏)𝜃 ′. Moreover, to avoid overfitting the learned Q function,
the neural network is trained on a a mini-batch sampled from
an experience replay buffer D. Note that our proposed transfer
learning framework is not restricted to DQN and can be easily
extended to other RL methods.

3 Proposed Transfer Learning Framework
Transfer learning improves the learning process of a model on a
target domain/task by leveraging information from a trained model
on a source domain/task. In the context of RL, the task is deter-
mined by the reward function (𝑟𝑡 ), while the domain consists of
the state space (S) and action space (A). We will show one of the
main benefits of applying transfer learning to HEMS and building
control– For developing a controller using transfer learning for
a new household with no historical data or very little data, col-
lecting only a few days’ worth of data to finetune the pretrained
model could be sufficient. This starkly contrasts with existing RL
approaches, where an RL agent, trained from scratch, requires a
large amount of training data or environment interactions to learn
a good control policy.

3.1 Global Model
Figure 1 illustrates an overview of our proposed framework. We
first train a global model on a large amount of data collected from
multiple source households (in this study 90 households) to learn a
generic control policy. The global model identifies common patterns
among households. For example, it learns that batteries need to
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Figure 1: The overview of the proposed transfer learning framework

Figure 2: The performance of the finetuned models for the
target households on the test days.

be discharged in the evening because there is typically an evening
peak in load and price. For this reason, training the global model
on a large amount of data can help the agent to better extract such
common behaviours.

3.2 Finetuned Models
In this phase, we finetune the global model to obtain a local con-
troller for each target household (in this study 10 target households).
These house-specific agents focus on local patterns, such as the typ-
ical time when the evening peak in load occurs for each household.
The RL training loop in the finetuning phase is similar to that of the
global model, with three main changes: (i) For finetuning, we first
initialize the local agents using the global model’s weight. Further,
during finetuning, we freeze most of this model and only tune the
weights of the last layer. This ensures that the finetuned agents
retain the generic patterns extracted by the global model; (ii) We set
a significantly lower learning rate to avoid overfitting on a small
dataset; (iii) We finetune the agents for significantly fewer episodes
to mimic a situation where only a limited dataset is available.

3.3 Experiment Setup
We selected data from 100 households in Belgium provided by part-
ners in the FlexMyHeat research project3. These households belong
to different clusters, with their annual energy consumption ranging
from 2200 kWh to 8200 kWh. 35 of these households are residential
apartments and the other 65 are houses. We designated 10 house-
holds as target households and the remaining 90 households as
source households to train the global model. These 100 households
are located in five different areas to ensure diversity in weather
conditions. We used 10 weekdays as a training set, 5 weekdays as a
validation set, and 4 unseen weekdays as a test set, all from April
2023. We focused on one month of data to minimize the effects of
seasonality on the results. The Q-function and target Q-function
were modeled by a fully connected neural network that has two
hidden layers with 256 and 128 neurons, respectively.

We benchmarked the trained models against a typical home
batteries rule-based controller (RBC), which aims to maximize self-
consumption by charging the battery when there is an excess of
PV generation and discharging when there is a shortage of PV
generation. We trained all global and local models with 10 different
seeds to achieve robust results and avoid biased outcomes.

4 Results
To study the efficacy of our proposed framework, we finetuned
agents on 10 different, unseen households. Figure 2 shows the
performance of these finetuned agents, benchmarked with the RBC
and standard RL agents trained from scratch for each of these
houses. The markers indicate the mean improvement over the 10
runs, and error bars represent the 25% and 75% quantile values. All
of the finetuned and local-from-scratch models were trained for 100
episodes. The figure shows that the finetuned models significantly
outperform the models trained from scratch by 19.15% on average.
Also, Fig. 2 shows that our proposed framework can scale across
different unseen households under scenarios with limited data, as
the finetuned agents converge to a good policy and outperform the
RBC after only a few episodes (100 episodes). Conversely, we found
that the local-from-scratch models need at least 10 000 episodes to
surpass the RBC, showing the data-intensive training they require.

3https://flexmyheat.ilabt.imec.be/
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Figure 3: The average learned policy by the global model for
the source households on a single test day.

To better understand why the pretrained model jumpstarts the
training of the finetuned models, we analyze generic patterns or
features learned by the global agent.We trained the global model for
40 000 episodes. The average learned policy of all source households
represents the generic behavior learned by the global agent (Fig. 3).
The global model charges the batteries from 10:00 to 17:00, when
there is high PV generation. In this way, the agent avoids injecting
power into the grid at low prices. In the evening, households prevent
high-cost electricity consumption from the grid by discharging the
batteries for self-consumption. To compensate for the morning
demand peak and avoid buying electricity during morning peak
hours, the RL agent decides to charge the batteries in the morning
when the price is low, which the RBC does not do.

Besides the generic patterns learned by the global model, we
also analyzed the feature importance for the learned global model.
Figure 4 shows the feature importance obtained using Shapley addi-
tive explanations (SHAP) [7]. It reveals that time and PV generation
are the most decisive features for the global model. Furthermore,
the global model does not pay much attention to the load feature,
as it is a house-specific feature and varies among households. It
highlights that the global model is able to learn generic, globally
common features in the pretraining phase, leaving the local feature
learning for the finetuning step.

5 Conclusion
In this paper, we proposed a transfer learning framework to scale
an RL-based home battery controller over different unseen target
households, by leveraging a pretrained agent on different source
households. We validated the performance of our proposed frame-
work using real-world data. Our results show that the finetuned
agents learn a high quality control policy for different unseen test
buildings. Comparisons with standard RL controllers show that
in scenarios with limited data, our finetuned agents can outper-
form RL controllers trained from scratch, providing improvements
of ∼20% over 10 different test buildings. This empirically demon-
strates the effectiveness and scalability of our proposed transfer
learning framework. Moreover, our results show that the global
model jumpstarts the training of the finetuned agents by learning
a generic policy, focusing on PV generation and time features. We
opensourced this global model, allowing others to use it.

Figure 4: The feature importance for the global model

While the results are promising, we intend to expand this study
further, focusing on two main directions. First, we plan to extend
our existing transfer learning framework to handle cases where
the source and target reward functions (tasks) are different. For
instance, how to finetune a global model, trained on source house-
holds to minimize the energy cost, to achieve peak shaving in target
households. A second direction we intend to focus on is developing
an offline framework for transfer learning where all global and local
agents will be solely trained on collected historical data, without
any interaction with simulation or real-world environments.
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