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ABSTRACT
With the ongoing energy transition, demand-side flexibility has
become important to provide grid support and allow further in-
tegration of sustainable energy sources. Residential energy assets
constitute a major and largely untapped source of flexibility, driven
by the increased adoption of solar PV, home batteries, and EVs.
However, unlocking this residential flexibility is challenging, as it
requires a control framework that can effectively manage house-
hold energy consumption while maintaining user comfort, which
should be easily scalable across different, diverse houses. We aim
to address this challenging problem and introduce a reinforcement
learning-based approach using differentiable decision trees. Our
proposed approach integrates the scalability of data-driven rein-
forcement learning with the explainability of (differentiable) de-
cision trees. The resulting controller can be easily adapted across
different houses and provides a simple control policy that can be
explained to end-users, facilitating maximal user acceptance. As a
proof-of-concept, we analyze our method using a home energyman-
agement problem, comparing its performance with commercially
available rule-based baseline and conventional state-of-the-art neu-
ral network-based RL controllers. Our preliminary study indicates
that the proposed method performs comparable to standard RL-
based controllers, outperforming baseline controllers by ∼20% in
terms of daily cost savings while being straightforward to explain.

CCS CONCEPTS
• Theory of computation → Reinforcement learning; • Hard-
ware → Smart grid; • Computing methodologies → Rule
learning.
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1 INTRODUCTION
The ongoing shift towards sustainable energy leads to a signif-
icant restructuring of the energy sector: large-scale integration
of distributed renewable energy sources, increased electrification,
phasing out of fossil fuel-based generation, etc. [9]. As a result
of these changes, there is a growing need for grid balancing ser-
vices and demand-side flexibility to ensure the reliable and secure
functioning of the grid. Conventionally, large industries and big
consumers were the primary sources of such demand-side flexibil-
ity. However, another important and as-of-yet largely untapped
source of energy flexibility is the residential sector [8].

Realizing a solution that unlocks this (residential) flexibility re-
quires effective controllers that can manage the energy consump-
tion of buildings, operating in a sequential way under uncertain
operating conditions. Developing controllers for such home energy
management systems (HEMS) is an extremely challenging task and
has been a major research area [7, 16]. A prominent and estab-
lished method in this domain is Model Predictive Control (MPC).
MPC relies on a mathematical model of the system to anticipate
its future behavior and an optimizer that uses this model to obtain
optimal control actions [3]. Several works have demonstrated the
effectiveness of MPCs in both simulation and real-world scenarios,
e.g., [5, 11]. However, most MPC deployments are limited to large
commercial or institutional buildings, because they strongly rely
on accurate system models, which require a non-trivial effort to
construct [23].

Consequently, recent research in designing controllers has
shifted towards data-driven RL-based methods [2]. RL-based con-
trollers rely on data obtained by interacting with the household,
circumventing the need for bespoke models as common with MPCs.
Such works show applications of RL in HEMS [13, 19], including
some real-world pilot studies [25]. While these RL solutions are
promising, realizing them in a commercially viable HEMS is still
challenging. One of these challenges pertains to the lack of explain-
ability associated with RL and deep RL algorithms [15, 17].

Since most HEMS are directly exposed to ordinary end-users
who typically are no energy experts, the primary requirement for
any acceptable control policy is that it can be easily explained
to such end-users. Since usual RL-based controllers rely on deep
neural networks, they are inherently black-box and hence difficult
to explain [15]. Additionally, while works in explainable AI such
as [18, 24] explore some post-hoc explanation techniques based on
SHAP values1 or feature importance, these explanations are mainly
1SHapley Additive exPlanations, [14].
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aimed at machine learning experts and cannot be offered to average
users (laypeople).

We identify this as a major obstacle in realizing practical, data-
driven, RL-based HEMS and present our work on learning RL poli-
cies using differentiable decision tree (DDT) as a possible solution to
this problem. The key idea is to replace the (deep) neural network-
based control policy with a simple decision tree-based policy that is
structurally explainable, i.e., in the form of rather simple if-then-else
rules, while being able to learn such trees using data and gradient
descent. Inspired by works such as [20], we demonstrate how dif-
ferentiable decision trees can be used with standard state-of-the-art
off-policy RL algorithms such as DDPG [12], and how such trained
actors lead to explainable control policies. Concretely, the main
contributions of our work are:

(1) We introduce a new ‘actor’ architecture based on differential
decision trees to train standard off-policy actor-critic RL
agents.

(2) We investigate the explainability of the DDT-based control
policies for different sized trees.

(3) We demonstrate the usability of such an agent on a prelim-
inary HEMS problem, comparing its performance against
baseline and standard RL controllers.

Note that, while [20] previously introduced a similar method, their
approach was restricted to Atari games and other benchmark RL
domains. To the best of our knowledge, our work is (one of) the
first applications of differentiable decision tree-based RL agents in
the energy domain.2

2 METHODOLOGY
2.1 Problem Formulation
We examine our proposed DDT-based RL controller in the con-
text of a home energy management system (HEMS), where the
goal is to efficiently control a home battery (flexibility asset) to
optimize the energy bill of a homeowner. As a specific case study,
we consider an average Belgian household with a rooftop solar
PV installation (with generated power 𝑃pv𝑡 ), non-flexible electrical
load (𝑃con𝑡 ), and a home battery. We assume that this household is
exposed to varying BELPEX3 day-ahead prices (𝜆con𝑡 ) and a capacity
tariff based on peak power [22]. This leads to a joint optimization
problem, where the HEMS must minimize the daily cost of both the
energy consumption (𝑐eng𝑡 ) and the peak power (𝑐𝑝𝑡 ) (detailed in Ap-
pendix A). To realistically reflect today’s typical conditions, we
incorporate solar PV and consumption profiles from a real-world
household and use actual BELPEX day-ahead prices from 2024.

2.2 Reinforcement Learning
We formalize the sequential decision-making problem presented
in §2.1 as a Markov Decision Process (MDP) [21]. Such MDP com-
prises a system state representation (x𝑡 ), a transition function 𝑓

defining how the state evolves over time, based on actions (𝑢𝑡 ),

2In our earlier work, we explored the application of DDTs in a policy distillation
scenario. This study distinguishes itself by directly integrating the DDTs in standard
actor-critic RL algorithms.
3This refers to the organised wholesale market for power trading in the Belgium
energy market, i.e., the current European Power Exchange Belgium.

where such transitions have an associated reward/cost to be maxi-
mized/minimized. In our case, the state (x𝑡 ) comprises the current
price, battery state-of-charge, non-flexible demand (𝑃con𝑡 ), and solar
PV generation (𝑃pv𝑡 ). The actions (𝑢𝑡 ) are the charging/discharging
signals for the battery. For improved explainability, we assume a dis-
crete action space of 5 elements (i.e., U = {−1,−0.5, 0, 0.5, 1}), with
the possibility of extension to continuous action spaces reserved
for future work. Our cost function comprises both time-varying
energy cost and peak power capacity cost (𝑐eng𝑡 and 𝑐𝑝𝑡 respectively;
see Appendix A). The transition function (𝑓 ) models the dynamics
of the household and the battery.

The goal of an RL agent is to find a policy 𝜋 : X → U that
minimizes the expected 𝑇 -step cost starting from an initial state
x0 ∈ X. For our work, we focus on DDPG, a state-of-the-art off-
policy, actor-critic algorithm, where the actor learns a control policy
and the critic concurrently estimates the optimal state-action value
function (𝑄-function). For more details about this algorithm, we
refer to [12], with additional modifications discussed in Appendix B.

2.3 Differentiable Decision Trees
Differentiable decision trees or soft decision trees are a variant of
ordinary decision trees, introduced in prior works such as [4, 10].
Like ordinary decision trees, DDTs have two types of nodes: (i) de-
cision nodes, and (ii) leaf nodes. Decision nodes comprise feature
selection weights (𝜷 ) for selecting a feature and cut-threshold (𝜙)
for splitting across the selected feature. However, unlike ordinary
trees, the decision node in DDTs implements a soft decision using
the sigmoid function (𝜎) as shown in Eq. (1a). The leaf nodes contain
an output distribution vector (w) that is tuned to obtain an output
probability distribution (p𝐿), which in our case is the probability
distribution over the (discrete, cf. supra) action space (U). This is
modeled using softmax, calculating the probability for each action
𝑢𝑚 ∈ U as Eq. (1b).

𝑝 left = 𝜎 (𝜷x − 𝜙) ; 𝑝right = 1 − 𝜎 (𝜷x − 𝜙) (1a)

𝑝𝐿𝑚 =
𝑒−𝑤𝑚∑ |U |
𝜅=1 𝑒

−𝑤𝜅

∀𝑚 ∈ {1, 2, . . . , |U|} (1b)

A DDT of arbitrary depth is then built using such decision and
leaf nodes (e.g., Fig. 2). Each decision node gives the path probabil-
ities for its edges and each leaf node gives the output probability
distribution. The final tree is obtained by appropriately combining
these probability values following the tree structure. As an exam-
ple, §2.4 details the exact formulation of a DDT of depth 2 and its
forward pass. At inference time, each decision node is converted
from the ‘soft’ version into a ‘crisp’ decision by using argmax, max
operators, resembling an ordinary decision tree. The trainable pa-
rameters (𝜷 , 𝜙 and w) are initialized randomly and learned via
gradient descent.

2.4 Formulation of DDT of depth 2
Based on §2.3, we provide the formulation for a DDT of depth 2
(Fig. 1). The path probabilities (𝑝𝑖 ) and leaf probabilities (𝑝𝐿

𝑗𝑘
) are

computed using Eq. (1a) and Eq. (1b) respectively. Algorithm 1
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Figure 1: Illustration of a DDT of depth 2 with decision nodes
denoted by rounded boxes and leaf nodes with rectangles.
Here, all 𝑝𝑖 represent path probabilities and 𝑝𝐿

𝑗𝑘
represents

probabilities at each leaf ( 𝑗) for each element (𝑘). Further,
𝑛 = |U| represents the size of the action space.

Algorithm 1 Depth 2 DDT Formulation

1: Initialize: 𝜷𝒊 , 𝝓, w𝐿
𝑘
, where 𝑖 = {1, 2, 3} (decision nodes) and

𝑘 = {1, 2, 3, 4} (leaf nodes)
2: Input: State x
3: for all i do
4: Feature Selection: 𝑥 𝑗 = 𝜷𝒊 · x
5: Evaluate Condition: 𝑝𝑖 = 𝜎 (𝑥 𝑗 − 𝜙𝑖 )
6: end for
7: Calculate Path Probabilities: p =

[
𝑝1 0
0 1−𝑝1

]
·
[
𝑝2 1−𝑝2
𝑝3 1−𝑝3

]
8: for all k do
9: Calculate Leaf Probabilities: p𝐿

𝑘
= {𝑝𝐿

𝑘1, 𝑝
𝐿
𝑘2, . . . 𝑝

𝐿
𝑘𝑛

} based
on Eq. (1b), where 𝑛 = |U|

10: end for
11: Output: 𝑜 = p[1, 1]p𝐿1 + p[1, 2]p𝐿2 + p[2, 1]p𝐿3 + p[2, 2]p𝐿4

shows the implementation of the DDT. Thus, first the path probabil-
ities and leaf probability distributions are computed. Subsequently,
the probabilities are combined according to the tree structure: (i) For
each branch (that starts from the root and ends at a leaf), path prob-
abilities for each edge of the branch and the corresponding leaf
node distributions are multiplied to get a probability distribution
for that branch; (ii) Output distributions of each of the branches
are added to get the final distribution as the output of the DDT.
This algorithm describes the ‘forward’ pass of the DDT used for
training. At inference, all the ‘soft’ operations are converted into
‘crisp’ operations, and the DDT is reduced to an ordinary decision
tree.

3 RESULTS
We validate the performance of our proposed DDT-based RL agents
on a battery-based HEMS problem (discussed in §2) and inves-
tigate the control performance and explainability of the learned
controllers using ‘shallow’ DDTs of depth 2 and 3.

3.1 Performance of DDT-based Agents
The performance of our proposed approach using DDTs of depth 2
and 3 is presented in Table 1 (listing the mean and standard devi-
ation over 5 seeded runs along with the minimum and maximum

Table 1: Comparison of DDT-based agents

Algorithm Cost
Mean (std deviation) Min Max

DDPG (Standard) € 3.34 ± 0.8 € 2.29 € 4.64

DDT (depth 2) € 3.47 ± 1.8 € 1.48 € 6.04

DDT (depth 3) € 3.02 ± 1.5 € 1.48 € 5.54

Baseline RBC € 4.70 – –

values). We note three key observations: (i) DDT agents of depth 3
outperform all other agents including standard DDPG; (ii) both
DDT agents outperform the baseline RBC controller;4 (iii) the per-
formance difference between DDTs of depth 2 and standard DDPG
agents is quite small (∼4%). This indicates that our proposed ap-
proach can learn good control policies and outperform typical,
built-in RBC included with commercially available batteries [1].

Note that, although the mean performance of DDT agents of
depth 3 is slightly better than the standard DDPG agents, the large
standard deviation values suggest that this difference is not statis-
tically significant. Furthermore, the large difference between the
minimum and maximum values of DDT-based agents indicates
some instability in the training process, with some models con-
verging to an inferior control policy. This instability in learned
models could be associated with the tree structure of the DDT,
where changes in hierarchically higher decision nodes could dis-
proportionately impact the output distributions. Future work will
further investigate and address this (in)stability issue.

3.2 Explainability of DDT-based agents
Aside from control performance, we study the explainability of
the learned DDT policies. The learned DDT policies can be eas-
ily visualized owing to their tree structure. As an example, Fig. 2
presents a learned policy of a DDT of depth 2. Note that these DDTs
are randomly initialized and only learn the feature selection (e.g.,
choosing ‘demand’ or ‘price’ as the feature for the decision node)
and the respective cut thresholds during training, through gradient
descent. Figure 2 illustrates that the learned DDT is straightforward
to understand and takes intuitive actions — e.g., the DDT policy
only charges the battery when both the price and demand are low,
indicating a consistent peak shaving behavior taking into account
current as well as future trends. These preliminary findings clearly
show that in addition to the strong performance of the DDTs, the
learned policies are also easy to explain and can potentially improve
user acceptance of such HEMS.

4 CONCLUSION
We introduced a novel method for obtaining explainable RL-based
control policies using differentiable decision trees. The DDTs can
easily ‘fit’ into standard actor-critic RL algorithms as shown in
our implementation using DDPG on a battery-based home energy
management scenario. Our results in §3 clearly demonstrate that
our proposed DDT-based agents can learn high-quality control

4A typical, commercially installed self-consumption controller.
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Figure 2: Example of a learned DDT for depth 2 showing selected features, learned thresholds and output distributions. The
annotations indicate how the DDT can be explained.

policieswhile being simple and easy to explain. Preliminary findings
show that the DDT-based agents lead to an overall comparable
performance as compared to standard neural network-based agents
and outperform them in certain settings.

4.1 Limitations and Future Work
The goal of this work was to introduce a novel method for explain-
able RL-based controllers for energy applications. The limitations
thereof pertain to (i) the simplicity of the considered case study
problem, (ii) training (in)stability, and (iii) lack of real-world valida-
tion. Future work includes extending our initial exemplary problem
scenario by expanding its complexity and including different flexi-
bility assets such as batteries, EVs and building thermal mass. The
key idea will be to develop an elaborate, data-driven HEMS based on
DDTs that can efficiently leverage these flexibility assets. Another
fundamental research direction includes investigating the training
instability of the DDT-based agents and identifying possible solu-
tions for it (Appendix C). Besides these simulation-oriented studies,
we aim to deploy such DDT-based RL in real-world households to
study the performance and user acceptance of such an ‘AI’ driven
method.
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Figure 3: Example of a learned DDT for depth 3

Table 2: Parameters related to the Battery model used in the
Home Energy Management Simulator

Parameter Value

Max Capacity 10 kWh

Max Power 4 kW

Efficiency (round trip) 0.9

Action Space {−1,−0.5, 0, 0.5, 1}

APPENDIX
A HOME ENERGY MANAGEMENT PROBLEM
The home energymanagement problem described in §2.1 is modeled
as:

min
𝑢1,...𝑢𝑇

𝑇∑︁
𝑡=1

𝑐
eng
𝑡 + 𝑐𝑝𝑡 (2a)

s.t.: 𝑐eng𝑡 =

{
𝜆con𝑡 𝑃

agg
𝑡 Δ𝑡 : 𝑃agg𝑡 ≥ 0

𝜆
inj
𝑡 𝑃

agg
𝑡 Δ𝑡 : 𝑃agg𝑡 < 0

∀𝑡 (2b)

𝑐
𝑝
𝑡 = 𝜆cap max(𝑃agg𝑡 , 𝑃

𝑎𝑔𝑔

min) (2c)

𝑃
agg
𝑡 = 𝑃con𝑡 + 𝑃

pv
𝑡 + 𝑢𝑡 ∀𝑡 (2d)

𝐸𝑡+1 =

{
𝐸𝑡 + 𝜂 𝑢𝑡 Δ𝑡 : 𝑢𝑡 ≥ 0
𝐸𝑡 + 1

𝜂 𝑢𝑡 Δ𝑡 : 𝑢𝑡 < 0
∀𝑡 (2e)

0 ≤ 𝐸𝑡 ≤ 𝐸max; 𝑢min ≤ 𝑢𝑡 ≤ 𝑢max ∀𝑡 . (2f)

The battery is modeled using a linear model (Eq. (2e) with
charging/discharging actions 𝑢𝑡 and current energy level (𝐸𝑡 ). The
cost of energy consumed (𝑐eng𝑡 ) depends on the actual power con-
sumed (𝑃agg𝑡 ) and the current injection and consumption prices (𝜆inj𝑡

and 𝜆con𝑡 respectively). Similarly, the capacity cost (𝑐𝑝𝑡 ) depends on
the actual power consumed and the minimum power capacity con-
tracted (which is set to 4kW). Furthermore, we assume𝑇 = 24 hours
and a time resolution Δ𝑡 = 1 hour. The battery configuration is
listed in Table 2. The RBC tries to maximize self-consumption as
common with commercially available batteries.

B DISCRETE ACTOR-BASED DDPG
As described in §2, we use DDTs as the actor-network in DDPG.
However, standard DDPG implementations work only with contin-
uous actions. To overcome this challenge, we implement a discrete

Figure 4: Example of a learned DDT for depth 2 with a redun-
dant decision node

actor-based DDPG agent, inspired by [6]. The key changes are:
(i) the target values for critic training are computed using Eq. (3);
(ii) the equation for computing actor loss (as gradient of 𝑄-values)
is modified to Eq. (4).

critic target = ©­«𝑐𝑖 +
|𝑈 |∑︁
𝑘=1

𝑝 (𝑢𝑘 |x𝑖+1)𝑄̂𝜃−
𝑐
(x𝑖+1, 𝑢𝑘 )

ª®¬ (3)

L𝑎 = ∇ E

|𝑈 |∑︁
𝑘=1

𝑝 (𝑢𝑘 |x𝑖 )𝑄̂𝜃𝑐 (x𝑖 , 𝑢𝑘 )
 (4)

C ADDITIONAL RESULTS
C.1 Depth 2 DDT with redundant rules
In some instances, the decision nodes in the DDTs learn redundant
or conflicting rules, which in some cases can lead to inferior results.
An example of such a DDT is depicted in Fig. 4. Here, the highlighted
decision node cuts along the same feature as its parent node and
learns a redundant threshold leading to one of the leaves being
unreachable. This can contribute to training instability and needs
to be investigated further.

C.2 Depth 3 DDT
Besides DDTs of depth 2, we also trained DDTs with depth 3. An
example of such a decision tree is shown in Fig. 3. The higher
depth enables this variant to have more decision nodes, leading
to a more complex tree representation that can better capture the
environment dynamics. However, as observed in Fig. 3, not all leaf
nodes are being used due to the decision nodes learning redundant
rules, similar to the tree depicted in Fig. 4. This indicates the need for
further tuning the training process and/or introducing additional
loss terms that can penalize such behavior.
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