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ABSTRACT
A continuous rise in the penetration of renewable energy sources,
along with the use of the single imbalance pricing, provides a new
opportunity for balance responsible parties to reduce their cost
through energy arbitrage in the imbalance settlement mechanism.
Model-free reinforcement learning (RL) methods are an appropri-
ate choice for solving the energy arbitrage problem due to their
outstanding performance in solving complex stochastic sequential
problems. However, RL is rarely deployed in real-world applications
since its learned policy does not necessarily guarantee safety dur-
ing the execution phase. In this paper, we propose a new RL-based
control framework for batteries to obtain a safe energy arbitrage
strategy in the imbalance settlement mechanism. In our proposed
control framework, the agent initially aims to optimize the arbi-
trage revenue. Subsequently, in the post-processing step, we correct
(constrain) the learned policy following a knowledge distillation
process based on properties that follow human intuition. Our post-
processing step is a generic method and is not restricted to the
energy arbitrage domain. We use the Belgian imbalance price of
2023 to evaluate the performance of our proposed framework. Fur-
thermore, we deploy our proposed control framework on a real
battery to show its capability in the real world.
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• Theory of computation → Reinforcement learning; Appren-
ticeship learning; • Hardware → Smart grid; Batteries.
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1 INTRODUCTION
Countries are making progress in transitioning toward a decar-
bonized electricity grid by adopting a larger amount of renewable
energy sources (RES). However, the rise in shares of RES leads
to an increasing mismatch between generation and consumption,
given the dependence of RES generation on weather conditions.
This mismatch poses challenges to transmission system operators
(TSOs) in maintaining the balance of the grid. TSOs rely on balance
responsible parties (BRPs) to assist in keeping supply and demand
balance, by penalizing unbalanced BRPs in a periodic (typically
15min based) imbalance settlement scheme [5]. Europe’s electricity
balancing guideline (EBGL) stipulates calculating the imbalance
cost based on a single imbalance price, implying that both negative
and positive imbalances are penalized equally [13]. In this pricing
method, BRPs can reduce their cost while assisting TSOs in main-
taining grid balance by deviating from their day-ahead nomination.
The given imbalance pricing scheme, and the increased need for
balancing because of higher RES penetration presents a new op-
portunity for BRPs to reduce their cost through energy arbitrage in
imbalance settlement.

The energy arbitrage problem is a sequential complex one, given
the highly uncertain imbalance prices and the nearly real-time
decision-making that is required. Most previous research is based
on model-based optimization methods to obtain energy arbitrage
strategies [7, 20, 32]. These methods formulate the energy arbitrage
problem as a nonlinear programming problem which is typically
non-convex, meaning that its optimal solution cannot be directly
found. For this reason, linearization techniques (such as piecewise
linear approximation) are used to transform the nonlinear problem
into a linear ormixed-integer convex problem. However, using these
linearization techniques might lead to an imprecise approximation
or an intractable optimization problem. Stochastic optimization
and robust optimization are the most popular model-based opti-
mization methods. However, stochastic optimization has a high
computational burden due to numerous scenarios, while a robust
optimization solution tends to be extremely cautious [43]. Reinforce-
ment learning (RL) methods can deal with such model-based related
problems: model-free RL methods do not require prior knowledge
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or a detailed model of the environment. The agent interacts with
the environment to capture stochasticity in the environment and
learn a (near-)optimal strategy. Also, RL does not have any spe-
cific hypothesis concerning the reward function adapting to any
non-linear rewards. Furthermore, RL agents directly learn a control
policy, without the need for repeatedly solving an optimization (as
seen in model-based methods), making them suitable for real-time
control. RL methods have achieved state-of-the-art performance on
many energy applications such as control of building systems [42],
electricity market modeling [17], and voltage control [14].

In spite of the impressive performance of RL in simulations,
it is challenging to deploy RL in real-world applications. Indeed,
vanilla RL methods cannot guarantee the safety and correctness of
the learned policy for unseen states. Safe RL aims to address this
by maximizing the cumulative reward while satisfying safety con-
straints [1]. Most safe RL methods try to constrain the policy during
the learning process [3, 10, 40]. While effective, a major drawback
of such methods is that, since the agent is trained to satisfy some
predefined constraints, the learned constrained policy cannot be
scaled to other similar settings: for redeploying the learned policy
in other similar settings, the agent needs to be retrained (even if
there is a slight change in the constraints). However, retraining RL
agents is usually time-consuming and computationally expensive.

To reduce computation at inference time, knowledge distillation
in neural networks was first introduced in [18]. The key idea of
knowledge distillation is that a larger teacher model transfers its
knowledge to a smaller student model to achieve competitive per-
formance and faster inference. Knowledge distillation is commonly
used to address the huge computational burden and memory re-
quirement of large models. It is shown that knowledge distillation
improves model generalization as the student model is trained us-
ing soft targets instead of hard targets [35]. The teacher model tries
during its training phase to assign the highest probability to the
correct class (or best action) and small probabilities to incorrect
classes (or other actions). These relative probabilities of incorrect
classes provide more information about how the teacher model
tends to generalize. Therefore, training the student model with soft
targets transfers this generalization ability of the teacher model
efficiently to the student model.

In this paper, we introduce the extension of the standard knowl-
edge distillation process by adding an optimization layer to the
student model to correct and constrain the RL policy. Building
upon this idea, we propose a new RL-based control framework for
batteries to obtain a safe energy arbitrage strategy in the imbalance
settlement mechanism. In the proposed control framework, the
agent is initially trained to maximize the arbitrage profit (Section 3).
Afterwards, in the post-processing step, the aim is to transfer knowl-
edge from the trained agent to the student agent while correcting
the policy of the student agent (Section 4). The policy correction
of the student agent is based on human intuitive constraints, to
make the final policy rational from a human perspective. The main
advantage of the proposed framework over previous online safe
RL methods lies in its greater flexibility for reusing pretrained RL
agents. By applying the post-processing step, BRPs can avoid re-
training from scratch and effortlessly reuse pretrained RL agents in
accordance with their own defined constraints and preferences.

We employ distributional deep Q learning (DDQN), a state-of-
the-art RL method. The main advantage of distributional RL over
standard RL is its ability to estimate the complete probability distri-
bution of returns instead of relying on a single value expectation,
resulting in superior performance. However, the proposed policy
correction process and control framework can be applied to all RL
methods. The performance of the proposed control framework is
validated using the Belgian imbalance price of 2023. Moreover, a
real-time experimental study using a real battery is conducted to
better demonstrate the capability of the proposed control frame-
work in the real world (Sections 5 and 6). Our main contributions
in this paper are:

• We introduce a new policy correction step that can be applied
to any RL method to ensure the correctness and safety of
the final policy;

• We propose a distributional RL-based control framework for
a battery to obtain a safe energy arbitrage strategy in the
imbalance settlement mechanism based on properties that
adhere to human intuition;

• We implement the proposed control framework on a real
battery to evaluate its performance in the real world.

2 BACKGROUND AND RELATEDWORK
Imbalance Settlement. BRPs are responsible for consistently bal-
ancing their individual consumption and generation. However, a
deviation from their day-ahead nomination is inevitable because
of uncertainties in RES. To correct the system imbalance, a TSO
activates reserve capacities offered in the balancing market, and
BRPs incur charges from the TSO for their imbalance at the end
of the imbalance settlement period (15 mins in most European
countries) [19]. This mechanism is called imbalance settlement.
The imbalance price is determined based on the reserve volume
and direction activated by the TSO [38]. Two main imbalance pric-
ing methodologies are used in different countries: (1) dual pricing,
where the price is different for positive and negative imbalances,
and (2) single pricing, where the price is the same for both imbal-
ance directions and is determined by the total system imbalance.
As mentioned earlier, the objective of ENTSO-E is to standard-
ize the imbalance settlement mechanism in Europe by adopting
the single pricing method for calculating the imbalance price for
each 15-minute imbalance settlement period. Hence, we focus on
the single pricing methodology. The Belgian imbalance settlement
mechanism was chosen as a case study for our research [5].

Energy arbitrage refers to a technique to gain financial profits
by buying energy at lower prices and selling it at higher prices.
Due to the high volatility in imbalance prices and the need for
near real-time sequential decision-making, energy arbitrage is chal-
lenging. For this reason, together with the recent change in the
imbalance pricing methodology, only few research studies have
been conducted on the arbitrage in the imbalance settlement mech-
anism [7, 20, 23, 32]. A new tailored encoder-decoder architecture
was implemented in [7] to generate improved probabilistic predic-
tions of the future system imbalance. Afterward, a bi-level robust
optimization problem was solved to optimize the profit of a BESS
in the imbalance settlement. A novel risk-aware stochastic model
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predictive control (MPC) approach was introduced in [32] to maxi-
mize the revenue of BESS in the imbalance settlement mechanism
while considering battery degradation costs.

Most of the mentioned studies have solved the arbitrage prob-
lem by applying model-based optimization methods. However, the
main drawback of these methods is that they need linearization
techniques to estimate the nonlinear problem as a linear (or mixed-
integer) convex problem that can lead to an inaccurate approxi-
mation. To address such problems of model-based optimization
methods, we deploy model-free RL methods. Several other research
works already studied energy arbitrage using model-free RL. For
example, [23] proposes a battery control framework based on dis-
tributional RL for a risk-sensitive energy arbitrage in the imbalance
settlement mechanism, taking into account a cycle constraint. In [9],
an RL-based method was proposed to optimize battery energy ar-
bitrage in the day-ahead market, taking into account an accurate
battery degradation model. The authors in [22] present an RL-based
battery bidding strategy in the real-time and frequency control an-
cillary servicesmarkets, using a transformer-based temporal feature
extractor. In [27], learning-based control algorithms were proposed
to obtain an optimal policy for home batteries. Further, [39] used a
deep-RL approach to solve the electricity arbitrage problem in the
day-ahead market.

Our current work is complementary to all of the above works on
RL for energy arbitrage, and particularly to our earlier research in
distributional RL [23]. The latter’s main objective was to establish
which distributional RL algorithm (distributional SAC vs. DQN)
performed best, for a battery controller with cycle constraints in
imbalance settlement. Yet, our current work specifically looks at
the problem that learned RL policies may exhibit erratic behavior,
in that they take surprising (if not non-optimal) actions in certain
regions of the system state space, especially those that have been
only infrequently visited during training. We specifically propose a
post-processing step to correct those policies, adopting a distillation
setup.

Safe RL. In RL literature, the concept of safety is used in oppo-
sition to risk, and it is not solely confined to physical damage [15].
In stochastic environments, the learned optimal policy may result
in poor performance as the learned policy is not necessarily robust
against the rare occurrence of large negative returns. The risk stems
from uncertainties in the environment. Some safe RL works focused
on domain knowledge of the problem to guarantee safety, such as
safe exploration [11], designing a safety shield [3], and human in-
terventions [30]. In these works, the safety model is assumed to
be known priori. On the other hand, there is another class of safe
RL work that focus on constrained optimization. In these studies,
the safe RL problems are commonly formulated as a constrained
Markov decision process (CMDP) (e.g., [1]). Usually, a Lagrange-
multiplier method is applied to transform the constrained problem
into a non-constrained one (e.g., [40]). In [10], convex constraints
are enforced in learned policies by incorporating a differentiable
projection layer within a neural network-based policy. The authors
in [29] repair the RL policy using expert knowledge by solving a
convex optimization problem. They define the optimization prob-
lem using a fuzzy model with triangular membership functions to
approximate the policy. In [28], an implicit optimization layer was

employed for projecting the actions taken by an RL-based controller
to ensure satisfaction of electric vehicle constraints.

The main disadvantage of the previous safe RL works is that they
generally constrain the policy during the training phase. Thus, it
is not straightforward to (re)deploy the learned constrained policy
in other similar settings with slight changes in constraints. A new
agent needs to be trained for each new setting, even if changes
in constraints are minor (e.g., boundary values). In some domains,
it is easy to distinguish sub-optimal actions from catastrophic ac-
tions – for instance, an autonomous vehicle driving too slowly is
sub-optimal, while the car driving into a group of pedestrians is
clearly catastrophic. However, in the energy arbitrage domain, the
distinction between sub-optimal and catastrophic actions is chal-
lenging, since safety and risk preferences may significantly differ
among BRPs. This problem becomes more pronounced when a safe
agent is trained for energy arbitrage in a highly volatile market,
such as the imbalance settlement mechanism. We therefore pro-
pose a new post-processing step to constrain (correct) a pretrained
unconstrained policy. The main advantage of our framework is
that it avoids retraining the agent from scratch, a process that is
typically time-consuming and computationally expensive. Instead,
our proposed framework constrains pretrained agents according
to the risk preference of BRPs in a post-processing step. This pro-
vides an opportunity to reuse a pretrained agent in similar settings
with different constraints. It is worth noting that our proposed
post-processing step can be applied to any RL method.

Knowledge distillation. It is usually preferred to train cum-
bersome deep neural networks with a strong regularizer such as
dropout because overparameterization increases the generalization
performance [16]. However, their computational complexity and
slow inference limit their usage in many applications. Knowledge
distillation is a technique used to efficiently compress the capabili-
ties of a larger teacher model into a smaller student model. Different
forms of knowledge can be transferred from the teacher model to
the student model, e.g., logits [18], feature maps [26], and rela-
tions between pairs of feature maps [41]. Apart from compaction,
knowledge distillation is also used to improve generalization [35],
reproducibility [4], data augmentation [21], and defend from adver-
sarial attacks [25]. The teacher model based on its confidence in the
ground-truth class rescales gradients of the student model. Also, the
teacher model’s probability mass on incorrect classes reflects class
relationships, offering more guidance to the student model [35].
These effects contribute to improving the generalization of the stu-
dent model. In this paper, we correct (constrain) the policy when the
logits knowledge is transferred from the pretrained unconstrained
neural network-based policy to the student model.

3 PROBLEM FORMULATION
In this section, the energy arbitrage problem in the imbalance settle-
ment mechanism is formulated as a Markov decision process (MDP)
(Section 3.1) and the RL method used for solving the problem is
explained in detail (Section 3.2).

3.1 MDP Formulation
An MDP presents stochastic sequential decision-making problems
as a mathematical framework. The MDP problem is defined by a
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tuple (S,A,R,P, 𝛾), where S represents the state space, A de-
notes the (discrete) action space, R : S × A → R is the instanta-
neous reward function, P : S × S × A → [0, 1] represents the
unknown state transition probability distribution, and a discount
factor 𝛾 ∈ (0, 1] [34]. At each time step 𝑡 , the environment state
𝑠𝑡 ∈ S is the observation of the agent. After taking action 𝑎𝑡 ∈ A,
the environment provides a reward value R(𝑠𝑡 , 𝑎𝑡 ) for the agent.
The state transition probability distribution P(𝑠t+1 |𝑠𝑡 , 𝑎𝑡 ) deter-
mines the probability of moving to a new state 𝑠t+1 ∈ S. In our
energy arbitrage problem, an instantaneous action taken by the
agent affects the overall expected profit of the agent. If the agent pri-
oritizes immediate rewards and discharges the battery completely,
it can miss high price periods and make less overall profit. The
agent in the energy arbitrage problem makes a decision (i.e., action)
at each time step regarding the charging/ discharging of battery.
Electricity markets and the grid are considered the environment
the agent interacts with. We define the MDP formulation for the
energy arbitrage problem in the imbalance settlement mechanism
as:

(i) State: The state at each time step (which is considered to be
2 minutes) is given by

𝑠𝑡 = (𝑇qh, qh,mo, SOC𝑡 , 𝜋 imb
𝑡 ) (1)

where 𝑇qh ∈ [0, 14] is the minute of the quarter hour, qh ∈
[0, 95] denotes the quarter hour of the day,mo represents the
month of the year, SOC𝑡 is the state of charge (SoC) of battery
at time 𝑡 . Finally, 𝜋 imb

𝑡 is the indicative imbalance price of
the current quarter hour qh. Indeed, the actual imbalance
price of each quarter hour is only known at the end of the
quarter hour. For this reason, our agent can only observe an
indicative imbalance price for the current quarter hour. Due
to uncertainty in the imbalance price of the current quarter
hour, our defined arbitrage problem is stochastic.

(ii) Action: Our action space is discrete, consisting of three pos-
sible actions, defined as follows:

𝑎𝑡 ∈ A, A = {−𝑃max, 0, 𝑃max} (2)

where 𝑃max is the maximum (dis-)charging power of the
battery. A positive action 𝑎𝑡 corresponds to charging the bat-
tery, while a negative action means discharging the battery
at time 𝑡 . The emergence of bang-bang behavior was investi-
gated in continuous control RL by [31]. They showed that RL
methods with discrete action space can achieve competitive
performance on standard continuous control benchmarks.
For this reason, we use a discrete action space in this paper.

(iii) Reward: The agent aims to maximize the profit by purchasing
energy at cheap imbalance prices and selling it at expensive
imbalance prices. Therefore,the reward function is defined
as the negative of the energy cost:

𝑟𝑡 = −𝑎𝑡𝜋 imb
qh , (3)

where 𝜋 imb
qh represents the real imbalance price of the quarter

hour in which 𝑡 lies.
(iv) State transition function: A state transition probability func-

tion P describes system dynamics. This probability function
is unknown for the agent in our problem due to uncertain-
ties in the imbalance price. More specifically, the probability

distribution of 𝜋 imb
t+1 given 𝜋 imb

𝑡 (P(𝜋 imb
t+1 |𝜋

imb
𝑡 )) is the only

source of stochasticity in the agent state and it is indepen-
dent from the taken action. Nevertheless, the state transition
for SOC𝑡 is explicitly calculated as shown below, since it is
influenced by 𝑎𝑡 .

SOCt+1 =


SOCtemp

t+1 : 0 < SOCtemp
t+1 < 1

0 : SOCtemp
t+1 < 0

1 : SOCtemp
t+1 > 1

(4)

SOCtemp
t+1 = SOC𝑡 + (max(𝑎𝑡 , 0)𝜂cha +

min(𝑎𝑡 , 0)
𝜂dis

) Δ𝑡

𝐶BESS
(5)

where 𝐶BESS is the maximum capacity of the battery, and
𝜂cha and 𝜂dis, are the charging and discharging efficiency
(∈ [0, 1]) of the battery, respectively. The interaction between
the agent and the environment helps the agent to estimate
the transition probability distribution. Although the part of
the state transition related to the SoC is deterministic, the
agent is unaware of it and needs to learn it.

3.2 Distributional Deep Q Learning
We will solve the arbitrage problem, formulated as the MDP above,
using a RL method. RL agents learn a policy to maximize the ex-
pected long-term reward. Classical tabular RL methods, e.g., Q-
learning, cannot be applied to problems with high-dimensional or
continuous state space due to the curse of dimensionality. Moreover,
for replacing the tabular Q values with a function approximator,
features need to be manually extracted [8]. To deal with these lim-
itations, the deep Q learning (DQN) method suggests an idea of
using a deep neural network as a function approximator to estimate
the Q function. To learn the Q function 𝑄𝜃 (𝑠𝑡 , 𝑎𝑡 ), the following
loss function is minimized:

𝐿𝑄 (𝜃 ) = E(𝑠𝑡 ,𝑎𝑡 ,𝑟𝑡 ,𝑠t+1 )∼D
[
(𝑟𝑡 + 𝛾 max

𝑎
𝑄𝜃 ′ (𝑠t+1, 𝑎) −𝑄𝜃 (𝑠𝑡 , 𝑎𝑡 ))2

]
.

(6)
𝜃 ′ = 𝜏𝜃 + (1 − 𝜏)𝜃 ′ (7)

The DQN method is stable in learning because of using the target
Q function 𝑄𝜃 ′ (𝑠𝑡 , 𝑎𝑡 ) for calculating next state-action values in
Eq. (6), and training by a mini-batch sampled from an experience
replay bufferD [24]. Furthermore, thismethod can avoid overfitting
the policy because it is an off-policy method that can learn from
historical data, not just current experiences [33].

The authors in [6] introduced for the first time a distributional
perspective on RL. These methods learn the probability distribution
over returns instead of a single-value return. Distributional RL
methods have various benefits, including the mitigation of Q-value
overestimation [12], facilitating learning risk-sensitive polices [36],
and improving training stability [6].

Extending beyond the basic DQN method, in DDQN, the proba-
bility distribution of returns (Z𝜃 ) is learned using the distributional
Bellman equation below [6]:

𝐿Z (𝜃 ) = E(𝑠𝑡 ,𝑎𝑡 )∼D [𝐷KL (TZ𝜃 ′ (𝑠𝑡 , 𝑎𝑡 ) | |Z𝜃 (𝑠𝑡 , 𝑎𝑡 ))] (8)

T𝑍 (𝑠𝑡 , 𝑎𝑡 )
𝐷
= 𝑟𝑡 + 𝛾 max

𝑎
E𝑍∼Z𝜃 ′ [𝑍 (𝑠r+1, 𝑎)] (9)

In Eqs. (8) and (9) TZ𝜃 is the probability distribution of T𝑍 , and
𝐴

𝐷
= 𝐵 indicates the equality of probability distributions for two
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random variables 𝐴 and 𝐵. 𝐷KL (.) denotes Kullback-Leibler (KL)
divergence loss. we formulate the distribution over returns 𝑍 as a
categorical distribution:

𝑍 (𝑠𝑡 , 𝑎𝑡 ) =
{
𝑧𝑖

���𝑧𝑖 = 𝑉min +
𝑉max −𝑉min

𝑁 − 1
𝑖, 0 ≤ 𝑖 < 𝑁

}
(10)

where 𝑉min and 𝑉max are the maximum and minimum values of
random returns, respectively, and 𝑁 is the number of bins.

4 POLICY CORRECTION
As mentioned earlier, vanilla RL methods cannot guarantee good
performance in improbable states due to several reasons. First,
as these states occur rarely (or sometimes they do not exist in the
training set), the agent cannot learn a good action for them and tries
to take action based on the agent’s generalization ability. Second, the
agent takes an action to maximize the expected return, not based on
theworst-case scenario return, leading to taking catastrophic actions.
In such a case, the agent might observe a few times that taking the
specific action can cause a large negative return. However, since
most of the time taking this action results in a high positive return,
the agent still prefers this action over other possible actions. In
this section, we propose a post-processing step to correct these
catastrophic actions in our energy arbitrage problem. The purpose
is to post-process the learned RL policy in a way that yields a correct
and interpretable policy from a human perspective.

A human-intuitive energy arbitrage policy for our problem needs
to possess three key properties: (1) charge the battery at very low
prices; (2) discharge the battery at very high prices; (3) bemonotonic
with respect to price and SoC. The first two properties refer to
the fact that the agent always must react properly to extremely
rare prices regardless of the SoC level. The third property is the
most crucial feature that makes the policy human-intuitive. For
instance, we expect that when the agent decides to charge the
battery at a specific price, it should also charge the battery at prices
lower than this specific price, assuming other elements in the state
remain constant. The following optimization problem ensures that
the resulting neural network-based policy 𝜋𝜑 has all the above-
mentioned properties.

min
𝜑

L𝑑 [𝜇𝜃 (𝑠𝑡 ), 𝜋𝜑 (𝑠𝑡 )] , 𝑠𝑡 ∈ S

s.t. Property 1: argmax 𝜋𝜑 (𝑠𝑡 ) = 𝑃max (charging) ,

if 𝜋 imb
𝑡 ≤ 𝜋 imb

Property 2: argmax 𝜋𝜑 (𝑠𝑡 ) = −𝑃max (discharging) ,

if 𝜋 imb
𝑡 ≥ 𝜋 imb

Property 3: argmax 𝜋𝜑 (𝑠𝑡 ) ≥ argmax 𝜋𝜑 (𝑠′𝑡 ) ,

if SOC𝑡 ≤ SOC′
𝑡 and 𝜋 imb

𝑡 ≤ 𝜋 ′
imb
𝑡

(11)

In Eq. (11), 𝜋 imb and 𝜋 imb are lower and upper bound thresholds for
the imbalance price, respectively, L𝑑 (.) is a loss function defined
in Eq. (12), and 𝜇𝜃 (.) is the unconstrained neural network-based
(pretrained) policy. Note that for the last property, other elements
in 𝑠𝑡 and 𝑠′𝑡 are the same.

To solve the optimization problem in Eq. (11), we formulate it as a
knowledge distillation process. Figure 1 shows the proposed frame-
work for knowledge distillation. During knowledge distillation, the

Figure 1: The proposed extension of knowledge distillation
for policy correction. The starred blocks indicate our new
addition to the standard distillation process.

teacher model 𝜇𝜃 is fixed and only the student model 𝜋𝜑 is trained.
The last layer of the student model is a differentiable optimization
layer. The optimization layer enforces the three human-intuitive
properties into the final policy. As these three properties are formu-
lated as a least squares problem with linear constraints in this paper,
the resulting optimization problem is convex and can be solved
using the optimization layer. We use the cvxpylayers package to
implement this optimization layer [2]. In the forward pass, the op-
timization layer solves the convex optimization problem, while the
weights of the student model are trained end-to-end based on the
gradient of the optimization solution during backpropagation.

L𝑑 [𝜇𝜃 (𝑠𝑡 ), 𝜋𝜑 (𝑠𝑡 )] = 𝜔𝐷KL (𝜋𝜑 | |𝜇𝜃 ) + 𝐷KL (𝜋 ′𝜑 | |𝜋𝜑 ) (12)

Equation (12) formulates the loss function in Eq. (11) where 𝜋 ′𝜑 is
the output of the student model before the optimization layer and
𝜔 is a parameter to balance the two KL divergence losses. The first
term in the loss function ensures that the student model closely
mimics the behavior of the teacher model. On the other hand, the
second term tries to keep the output of the student model before
and after the optimization layer as close as possible. Although the
optimization layer provides considerable flexibility in imposing
convex constraints on the final policy, its computational burden
to the student model makes the model inefficient, especially for
real-world applications. To address this problem, the second term
is added to the loss function. In that way, the student model is
forced to train its weights to meet constraints in the absence of
the optimization layer making the policy 𝜋 ′𝜑 as close as possible
to the constrained one 𝜋𝜑 . Consequently, during inference, the
optimization layer can be ignored, and the output of the student
model before optimization layer (𝜋 ′𝜑 ) is used for decision-making.

Our intuition for using knowledge distillation for the policy
correction has two parts. First, knowledge distillation provides a
framework for reusing pretrained RL agents. In this way, BRPs
can avoid retraining from scratch and effortlessly reuse pretrained
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RL agents based on their own defined constraints and preferences.
Second, the optimization layer is computationally expensive. In this
arbitrage problem, the agent requires 50 000 episodes to converge.
Considering a minibatch size of 16 384, training the teacher model
with the optimization layer for 50 000 episodes would drastically
increase the runtime to a point where the training loop may become
intractable. On the other hand, in the knowledge distillation process,
the student model only needs 600 epochs to be trained. Therefore,
knowledge distillation can significantly reduce the computational
time in our arbitrage problem.

In the end, it is noteworthy to highlight that our proposed post-
processing step is a generic framework and it is not limited to
energy domain applications. Using our proposed framework, the
policy of pretrained RL agents can be corrected by a set of defined
convex constraints. Moreover, the optimization problem defined in
Eq. (11) is an example of constraints (rules) that can make the final
energy arbitrage policy interpretable to humans. BRPs can have
their individual preferences and define their own set of constraints.
Also, these constraints depend on the inputs of the controller, and
therefore can be adapted to those inputs.

5 RESULTS
In this section, we evaluate the performance of our proposed control
framework, as explained in Sections 3 and 4, through simulation
and experimental results.

5.1 Simulation Setup
We use the Belgian imbalance price of 2023 for evaluating our
proposed framework.1 BRPs imbalances are settled at 15-minute-
based prices, which are calculated at the end of each quarter-hour
period. To provide more information to BRPs, the TSO (Elia) also
publishes 1-minute-based indicative prices in real-time which are
calculated based on the instantaneous system imbalance and prices
of cumulative activated regulation volumes on a minute basis.2 We
use these non-validated prices as a indicator of the real imbalance
price for the related quarter hour period. By getting closer to the
end of the quarter hour, the indicative price becomes closer to
the real imbalance price. Thus, the time resolution of decision-
making needs to be sufficiently short to benefit from the most
recent situation of the grid using the indicative price and to take
action accordingly. The resolution for the RL agent is hence set
to 2min. The characteristics of the simulated battery are 4MW/
8MWh with 90% round-trip efficiency. To increase the lifetime of
the battery, a minimum SoC is set at 10%. For the sake of proof-of-
concept study, we assume that the battery does not participate in
the day-ahead or other markets.

To train the initial unconstrained RL agent, the price dataset is
split as follows: the first 20 days of each month as a training set, the
21st to the 25th of each month as a validation set, and the remaining
days as a test set. The RL methods are trained with 50 000 episodes,
where each episode constitutes a single day. The discount factor 𝛾 ,
the soft update factor 𝜏 , the experience replay buffer size, and the
mini-batch size are set to 0.999, 0.1, 1× 106, and 16 384, respectively.

1https://opendata.elia.be/pages/home/
2https://www.elia.be/-/media/project/elia/elia-site/grid-
data/balancing/20190827_end-user-documentation-elia1-minute-publications.pdf

In both vanilla DQN and DDQN methods, the Q-value function and
target Q function are modeled by a fully connected neural network
that has two hidden layers with 256 and 128 neurons, respectively.
The learning rate of the networks is 5× 10−4. In the DDQN method,
𝑉max = −𝑉min = 1 × 105 and 𝑁 = 51.

For the knowledge distillation process, a 2-layer fully connected
neural network with hidden layer dimensions of 64 and 32 is used
as the student model 𝜋𝜑 . The teacher model architecture is the same
as the model trained in the previous step. The student model is
trained for 600 epochs with the learning rate of 1 × 10−3 using the
Adam optimizer. Tuning 𝜔 plays an important role in the training
of the student model. Choosing large 𝜔 results in a student model
that more frequently violates constraints. Conversely, a small 𝜔
leads to a student model that is less similar to the teacher model.
To keep this balance, we used 𝜔 = 1× 10−4. The values of 𝜋 imb and
𝜋 imb in Eq. (11), are set to −500 and 1500, respectively. The main
decision boundaries for the decision-making are learned by the RL
agent: 𝜋 imb and 𝜋 imb just define safety thresholds for the agent. For
this reason, these safety thresholds must correspond to extremely
rare prices to avoid impacting the main policy and primary deci-
sion boundaries. However, the definition of these safety thresholds
can vary among BRPs due to their different risk preferences. The
PyTorch package in Python is used to implement our proposed
control framework.

To benchmark the proposed control framework, a rule-based
controller (RBC) is introduced as a baseline method. The RBC in
this paper is a rudimentary threshold-based controller with two
cutoff points based on the statistical analysis of imbalance prices.
Although the RBC does not guarantee the optimal operation of the
battery, it is widely used in the real-world due to its simplicity and
ease of implementation [27]. These thresholds classify imbalance
prices into three categories: cheap, normal, and expensive. In the
RBC, the battery is (dis)charged with the maximum power when
the price is (above) below a (upper) lower bound. The RBC action
is formulated as follows:

𝑎𝑡 =


𝑃max : 𝜋 imb

𝑡 < 𝜆

0 : 𝜆 ≤ 𝜋 imb
𝑡 ≤ 𝜆

−𝑃max : 𝜋 imb
𝑡 > 𝜆

(13)

where 𝜆 and 𝜆 represent lower and upper bounds, respectively.
These thresholds are determined according to the distribution of
the Belgian imbalance price in 2023: we set the upper and lower
bounds to the first and third quartiles of the 2023 prices, which are
equal to 11 €/MWh and 179 €/MWh, respectively.

5.2 Simulation Results
The learning process of the RLmethods is illustrated in Fig. 2, which
shows the performance of the RBC and two RL methods on the
validation set during the training. Table 1 shows the performance of
the RBC and trained RL methods on the test set. The DDQNmethod
increases the average daily profit by 32.2% and 9.2% compared to the
RBC and DQNmethods, respectively. The reason behind this is that
the DDQN method estimates the probability distribution of returns
instead of the expectation of returns. In this way, distributional RL
methods mitigate instability in the Bellman optimality operator.
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The proposed post-processing step improves the performance by
3.2% compared to that of the original DDQN model.

(a) DQN Agent

(b) DDQN Agent

Figure 2: The learning process of (a) DQN and (b) DDQN. The
solid and faded lines show smoothed and actual learning
curves, respectively.

Table 1: Evaluation of RBC and RL methods on the test set.

Method RBC DQN DDQN DDQN after
policy correction

Profit
(€/ day/ MWh) 341.1 413.1 450.9 465.2

Figure 3 illustrates how the policy correction step improves the
performance by showing the DDQN policy heatmaps before and
after applying the policy correction step. As the most determinative
features for the DDQN agent are indicative imbalance prices and
SoC, we plot the learned policy with respect to these two input

features for various times and months. It can be observed that the
learned policy in some areas does not align with human intuition.
For instance, there is a significant idle/ charge area in the policy for
the 11th month at 10:00 when the price exceeds 1000 €/MWh, or
there is a discharge region in the policy for the 1st month at 20:00
when the price is lower than −400 €/MWh. The reason for these
imperfection areas can be found in the probability distribution of the
price, shown in Fig. 4. Prices below −200 €/MWh rarely occur (with
a probability of 3%), while prices above 1000 €/MWh are even rarer
(with a probability of 0.04%). Thus, the Q function 𝜇𝜃 overestimates
Q values for out-of-distribution (OOD) actions in these rarely seen
(or even unseen) states. As a result of this overestimation due to
the max operator in the Bellman equation (Eq. (9)), the agent takes
unexpected actions in these rarely seen states. As Fig. 3b shows,
after our post-processing step, all imperfections in the policy are
removed. The distilled (corrected) policy successfully mimics the
main decision thresholds of the teacher model, while replacing all
OOD actions with correct actions. As a result of replacing these
OOD actions with correct actions, the student agent achieves higher
performance than the original teacher model, as indicated in Table 1.
Furthermore, applying the policy correction step makes the final
policy interpretable with clear decision boundaries.

To compare the performance of the agent before and after the
post-processing step, the student and teacher models are tested
using data from September 29, 2023. As Fig. 5 shows, both models
can effectively react to nearly all fluctuations in the price: they
appropriately respond to two major peaks from 6:30 to 8:00 and
from 10:30 to 12:00 by discharging the battery, and react to one
major valley from 2:00 to 4:00 by charging the battery. However,
the teacher model takes wrong actions between 8:30 and 10:00:
the teacher agent decides to charge the battery between 8:15 and
8:30 when the price is approximately 130 €/MWh, while it does
nothing from 8:30 to 10:00 when the price mostly hovers around
70 €/MWh and sometimes even dips to −20 €/MWh. On the other
hand, the corrected model continuously charges the battery from
8:00 to 10:00, which ultimately results in a higher profit since the
battery has more energy to discharge in the following hours where
prices are higher (from 10:00 to 12:00).

5.3 Experimental Results
We implement our proposed control framework on a real battery to
better demonstrate its capabilities in a real-world setting. We use a
residential AlphaESS battery with 4kW/ 8kWh, as shown in Fig. 6,
which is installed in the imec/ Ghent University HomeLab. Home-
Lab is a real house offering a unique residential test environment for
IoT services and smart home services.3 For implementation, an API
is available for the HomeLab which contains functionalities for the
battery and other HomeLabGym devices [37]. This HomeLab API
will forward the command to a battery-specific API. This codebase
is running on a Raspberry Pi inside the HomeLab. The battery-
specific codebase includes the translation needed from Python to
the Modbus protocol in order to protocol to read and write appro-
priate registers on the battery energy management system (e.g.,
battery power) to the corresponding registers on the battery. The

3https://homelab.ilabt.imec.be/

https://homelab.ilabt.imec.be/
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(a) before (b) after

Figure 3: The learned policy (a) before and (b) after applying the policy correction step.

Figure 4: The probability distribution of the Belgian imbal-
ance price in 2023.

DDQN model, trained on the imbalance prices of 2023, after ap-
plying the post-processing step is used to control the HomeLab
battery with a granularity of 2 minutes. We control the battery from
January 21, 2024 to January 28, 2024 with Elia’s real-time imbalance
prices.

Table 2 lists the average daily profit during the trial period. The
revenue for the real-world implementation is 6.7% lower than that
for the simulation implementation (in the simulation implementa-
tion, we use the same price data as in the real-world implementa-
tion). There are three main reasons for this drop in the revenue:
first, it takes 3s to take an action (includes doing calculations and
fetch price data from Elia), 2s to send the taken action to the battery
(communication delay), and finally, the battery needs an average
of 5s to change it. Hence, it takes an average of 10s to select and
execute the appropriate action, which accounts for nearly 8% of the
2-minute time step. Second, from January 22 at 22:00 to January 23
at 7:00, Elia faced technical issues that caused a delay in publish-
ing imbalance price data. This led to our controller not receiving
the necessary values to take appropriate actions. Third, sometimes

Figure 5: The performance of the proposed controller on
September 29, 2023.

excessive frequent changes between charging and discharging can
cause the temperature of the battery to rise, resulting in decreased
battery efficiency. Figure 7 demonstrates a snapshot of the experi-
mental results on January 28 between 10:00 and 14:00. The bottom
row figure displays the actual power consumed by the HomeLab
battery, with colors indicating the actions sent to the battery. This
experimental study successfully demonstrated the deployability of
our framework.

6 CONCLUSION
In this paper, we proposed a new RL-based control framework for
batteries to perform energy arbitrage in the imbalance settlement
mechanism. In our proposed control framework, we first train the
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Table 2: Evaluation of the proposed control framework on
the real battery.

Method
DDQN after

policy correction
(simulation)

DDQN after
policy correction

(real world)

Profit
(€/ day) 6 5.6

Figure 6: HomeLab battery used for testing the proposed
control framework in real world

agent to maximize the arbitrage revenue. Then, the post-processing
step corrects (constrains) the learned policy during a knowledge dis-
tillation process based on defined human-intuitive properties. We
extended the standard knowledge distillation process by incorporat-
ing an optimization layer into the student model and modifying the
standard distillation loss to remove the (slow) differentiable layer
at inference. The performance of the proposed control framework
was evaluated through both simulation and experimental results
using the Belgian imbalance price of 2023. The results, using DDQN
as the RL algorithm, demonstrated that adding the post-processing
step outperforms all of the RBC, vanilla DQN, and vanilla DDQN
methods. The DDQN method with the policy correction step could
improve the average daily profit by 36.4% and 12.6% compared to the
RBC and DQNmethods, respectively. This improvement stems from
two factors: (i) the distributional perspective diminishes instability
in the Bellman optimality operator by learning the full probability

Figure 7: The experimental results on January 28, 2024 from
10:00 to 14:00.

distribution of returns rather than a single value expectation of
returns; (ii) the post-processing step deals with Q-value overesti-
mation by replacing OOD actions with correct (human-intuitive)
actions. During the post-processing step, the student model effec-
tively distilled the knowledge from the pretrained teacher model
regarding the main decision boundaries, while correcting the policy
based on the defined human-intuitive properties. We deploy our
proposed control framework in a real-world experimental setup,
i.e., on the HomeLab battery to investigate its performance in a real-
world environment. The experimental performance is 6.7% lower
than the simulated environment, due to delays in action calculation
and execution, missing data in real-time imbalance prices, and a
decrease in battery efficiency as a result of temperature rise. Note
that although we used DDQN in this paper, the proposed control
framework is applicable to all RL methods.

In future research, we will focus on developing an online knowl-
edge distillation process wherein both teacher and student models
are trained end-to-end during the RL training loop. Another direc-
tion for future work is to consider adding more constraints to the
proposed control policy, such as a (daily) cycle constraint for the
battery.
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