
Journal of Energy Storage 104 (2024) 114377 

A
2

Contents lists available at ScienceDirect

Journal of Energy Storage

journal homepage: www.elsevier.com/locate/est

Research papers

Distributional reinforcement learning-based energy arbitrage strategies in
imbalance settlement mechanism
Seyed Soroush Karimi Madahi a,∗, Bert Claessens b,a, Chris Develder a

a IDLab, Department of Information Technology, Ghent University – imec, Technologiepark-Zwijnaarde 126, 9052 Ghent, Belgium
b BEEBOP, Belgium

A R T I C L E I N F O

Keywords:
Battery energy storage systems (BESS)
Distributional soft actor–critic (DSAC)
Imbalance settlement mechanism
Reinforcement learning (RL)
Risk-sensitive energy arbitrage

A B S T R A C T

Growth in the penetration of renewable energy sources makes supply more uncertain and leads to an increase in
the system imbalance. This trend, together with the single imbalance pricing, opens an opportunity for balance
responsible parties (BRPs) to perform energy arbitrage in the imbalance settlement mechanism. To this end,
we propose a battery control framework based on distributional reinforcement learning. Our proposed control
framework takes a risk-sensitive perspective, allowing BRPs to adjust their risk preferences: we aim to optimize
a weighted sum of the arbitrage profit and a risk measure (value-at-risk in this study) while constraining the
daily number of cycles for the battery. We assess the performance of our proposed control framework using
the Belgian imbalance prices of 2022 and compare two state-of-the-art RL methods, deep Q-learning and soft
actor–critic (SAC). Results reveal that the distributional soft actor–critic method outperforms other methods.
Moreover, we note that our fully risk-averse agent appropriately learns to hedge against the risk related to the
unknown imbalance price by (dis)charging the battery only when the agent is more certain about the price.
1. Introduction

Climate change has been a motivation for transitioning toward a
decarbonized electricity grid on both the supply and the demand side.
The European Commission aims to reach carbon neutrality by 2050 [1].
To achieve this target, the penetration of renewable energy sources
(RES) needs to dramatically increase. The International Renewable
Energy Agency’s report of 2023 states that the total power capacity of
RES in the world grew from 1.57 TW in 2013 to 3.37 TW in 2022.1
However, this trend makes electricity generation more uncertain due
to the dependence of RES production on weather conditions. Conse-
quently, the increase in the share of RES leads to an increase in the
mismatch between generation and consumption.

Given this potentially increasing mismatch between production and
consumption, transmission system operators (TSOs) are facing chal-
lenges in maintaining the balance of the grid. Following the liberal-
ization of the European electricity system, the balancing responsibility
of TSOs has been outsourced to balance responsible parties (BRPs) [2].
Each unbalanced BRP is penalized by an imbalance price at the end
of each imbalance settlement period. According to the electricity bal-
ancing guideline (EBGL), published by the European Network of Trans-
mission System Operators for Electricity (ENTSO-E), the main objective
of the imbalance settlement mechanism is to make sure that BRPs
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E-mail address: seyedsoroush.karimimadahi@ugent.be (S.S. Karimi Madahi).

1 https://www.irena.org/Publications/2023/Mar/Renewable-capacity-statistics-2023.

support the system balance in an efficient way and to stimulate market
participants in restoring the system balance [3]. Also, EBGL states
that a single imbalance pricing method should be used to calculate
the imbalance cost: the settlement price should be the same for both
negative and positive imbalances. Such a single imbalance pricing
encourages BRPs to deviate from their day-ahead nomination to help
the TSO with balancing the grid and to reduce their cost. The wide
usage of RES in addition to the single imbalance pricing provides an
opportunity for BRPs to reduce their cost using an arbitrage strategy in
the imbalance settlement mechanism. For this purpose, recently battery
energy storage systems (BESS) have attracted the attention of BRPs
due to their fast response time [4], high efficiency [5], and significant
decreases in cost of recent battery technology [6].

Energy arbitrage in this imbalance settlement mechanism is chal-
lenging because of high uncertainties in imbalance price and near
real-time decision-making. Due to these challenges, as well as the
recent change in the imbalance pricing methodology, few research
works have been conducted on the arbitrage in the imbalance settle-
ment mechanism [2,7,8]. Most of the cited studies have formulated
control strategies for BESS using model-based optimization methods,
such as stochastic optimization and robust optimization. Despite their
promising results, deploying model-based optimization methods for the
https://doi.org/10.1016/j.est.2024.114377
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arbitrage problem sometimes is not straightforward due to potential
on-convexities in the problem. Furthermore, sometimes these opti-
ization methods, especially stochastic optimization, suffer from high

computational time during inference because of solving an optimization
problem repeatedly. This restricts the applicability of such optimization
methods for problems with relatively short decision-making time inter-
vals, such as our minute-based energy arbitrage problem. In addition,
these methods fall short in problems where obtaining an accurate
model of the system is difficult or the system is partially observable.
For example, modeling a real electricity market is challenging due to
partially known model parameters and uncertainties [9].

Given the above challenges, few research works have focused on
risk management in the arbitrage problem in the imbalance settlement
mechanism. Generally, market participants have different risk prefer-
ences. For example, BRPs have more conservative arbitrage strategies
in the imbalance settlement mechanism because of highly volatile im-
alance prices. In other words, BRPs assign higher weights to scenarios
ith lower revenues and deviate from risk-neutral decision-making.
hus, to provide a more practical solution, a risk-averse perspective
eeds to be considered in the arbitrage strategy, while to the best of
he authors’ knowledge, most previous studies have largely ignored
isk management. Moreover, a battery’s lifetime mainly depends on its
harging/discharging operations. Frequently switching between charg-
ng and discharging can significantly reduce the battery cycle life and
hus decrease the net profit, due to an increased operational cost of the
ESS.

In summary, shortcomings and weaknesses in previous studies of
arbitrage strategies are that they: (i) do not consider a risk-sensitive
erspective; (ii) do not explore model-free alternatives for an arbitrage
roblem in the imbalance settlement mechanism; and (iii) do not study
n arbitrage problem in the imbalance settlement mechanism with a
inute-based decision-making time resolution. To address these short-

comings (further elaborated in Section 2), in this paper, we propose
a distributional RL-based control framework for a risk-sensitive energy
arbitrage strategy in the imbalance settlement mechanism for BESS. The
roposed control framework (Section 3) aims to maximize the arbitrage

profit as well as a risk measure by constraining the daily number of
ycles for the battery. To the best of our knowledge, our work presented
ere is the first that adopts distributional RL for BESS to perform energy

arbitrage in electricity markets while considering the primary opera-
tional constraints of a BESS. Thanks to distributional RL, our proposed
framework improves over other methods in energy arbitrage in three
aspects: (i) outstanding performance (ii) ability to learn risk-sensitive
policies (iii) stability in learning. Besides its ability to introduce risk-
awareness, our solution particularly adopts a model-free, data-driven
approach. This allows it to efficiently deal with nonlinear/ non-convex
objective functions and constraints which risk-awareness typically en-
ails. We believe distributional RL methods are proper methods for risk
anagement, since they learn the complete probability distribution of

andom returns instead of the expected return. The proposed control
framework can be tuned according to the risk preference of BRPs from
a fully risk-averse perspective to a fully risk-seeking one. In this paper,
we start from two state-of-the-art reinforcement leaning (RL) methods,
.e., deep Q-learning (DQN), as a value-based method, and soft actor–
ritic (SAC), as a policy gradient method. We extend these vanilla
QN and SAC methods with a distributional perspective (i.e., DDQN,
SAC) and a risk-aware component in the loss function (Section 4).

The performance of the proposed control framework is evaluated on
he Belgian imbalance prices of 2022 (Sections 5 and 6). Overall,
ur contributions in this paper are that we propose a distributional
L-based control framework

(i) that achieves a risk-sensitive arbitrage strategy with a tunable
risk tolerance by optimizing a weighted sum of the arbitrage rev-
enue and a risk measure in the imbalance settlement mechanism;
a

2 
(ii) for BESS to attain implicit balancing in the imbalance settlement
mechanism, while considering a constraint on the daily number
of cycles;

(iii) for which we compare the performance of value-based and
policy gradient RL methods in a highly uncertain trading market.

Next, in Section 2 we first outline previous studies on the energy
arbitrage of BESS in electricity markets and highlight research gaps.
Section 3 formalizes the problem formulation of energy arbitrage in
the imbalance settlement mechanism. Our adopted RL methods for
solving it, and the rationale for their use, are then explained in detail
in Section 4. Quantitative results on a case study are presented in
Section 5, and finally, Section 6 summarizes our overall conclusions.

2. Background and related work

Energy arbitrage is a technique to achieve financial profits by pur-
chasing energy when the price is cheap and selling it when the price is
expensive [10]. This section provides a review of previous works on the
energy arbitrage of energy storage systems from various perspectives
and highlights research gaps.

2.1. Energy arbitrage for energy storage systems

Target market: Energy arbitrage can be performed within a single
lectricity market to take advantage of varying prices at different
ours. For instance, [11] considers the day-ahead market : a day-ahead

dispatch model is proposed for a liquid air energy storage coupled
with an liquified natural gas (LNG) regasification process in day-ahead
lectricity and LNG gas markets. On the other hand, [12] focuses on the
eal-time market. In particular, first, they obtain the maximum potential

profit from the real-time market using a linear optimization program,
assuming perfect foresight for future prices. Then, a shrinking-horizon
control algorithm is developed for the energy arbitrage strategy of a
BESS in the real-time market, by considering forecast errors on the
uture real-time prices.

Clearly, arbitrage can also consider a combination of multiple mar-
ets, to benefit from a price difference between two or more electricity
arkets. For example, [13] provides deterministic model formulations

to aggregate multiple arbitrage opportunities for electricity storage
by considering all three short-term markets, i.e., day-ahead, intra-
day, and real-time markets. In [14], the risk management of BESS
idding is studied in both day-ahead and intraday markets. In [15], the

planning framework for electric vehicle (EV) aggregators is proposed to
participate in the day-ahead market and to react to imbalance prices.

Energy arbitrage algorithm: Some studies have focused on model-
ased optimization methods to solve energy arbitrage problems. For
xample [16] uses a bi-level approach for the joint optimization of

transmission revenues (using the MW-mile scheme) and day-ahead
arket participation through a BESS. They use robust optimization to

deal with uncertainties. The authors in [17] propose a model predictive
control (MPC) framework for designing aging aware arbitrage strategies
for BESS in the intraday market. Also stochastic models have been used,
e.g., as in [18], which uses it to maximize the energy arbitrage revenue
of a BESS under uncertainty in both day-ahead and real-time markets.

On the other hand, several research works have been conducted to
obtain optimal arbitrage strategies using model-free RL. Han et al. [19]
propose an arbitrage strategy based on Q-learning-based to maximize
operating profit in the day-ahead market. Similarly, [20] proposes a
deep-RL approach to solve the electricity arbitrage problem in the day-
ahead market. As an example for the intra-day market, [21] proposes
n RL-based framework for the strategic participation of a BESS.
Risk-sensitive energy arbitrage: The risk of bidding in electricity

arkets stems from the variance between predicted and actual values of
he (i) market price, as well as the BRP’s portfolio’s overall (ii) demand
nd (iii) supply. However, risk-sensitive arbitrage strategies in different
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markets represent distinct strategic bidding behaviors, as explained
next. In both day-ahead and imbalance markets, BRPs are exposed to
uncertainty in the market price. However, dealing with the risk related
to imbalance prices is more challenging: in the day-ahead market, there
is a strong correlation between day-ahead prices and time periods.
Participants typically have sufficiently accurate predictions of peak and
off-peak time periods in the day-ahead market. On the other hand,
imbalance prices are highly uncertain with a weak correlation between
imbalance prices and time periods [22]. Consequently, in the imbalance
settlement mechanism, the degree of reliance on the predicted imbal-
ance price plays a crucial role in specifying BRPs’ risk preference. The
risk related to error in the prediction of demand and supply mainly
affects BRPs’ bidding strategy in the day-ahead market. High prediction
error causes an incorrect day-ahead nomination for BRPs, resulting
not only in an extra day-ahead cost but also potentially leading to a
significant imbalance settlement due to their large deviation from the
day-ahead nomination. Articles [23,24] are examples of studies that
consider risk management in energy arbitrage problems.

BESS lifetime: The BESS lifetime is a crucial factor in the financial
assessment of the energy arbitrage strategy as the operational strategy
of BESS significantly influences its lifespan. There are several ways
to consider BESS lifetime in arbitrage problems: the authors in [25]
prevent frequent cycling by adding a discharge cost to the objective
function. In [13], the BESS cycle-life is included as a depreciation cost,
which is positive if the cycling rate is greater than the targeted cycling
rate, zero otherwise. In [26], the aging cost of BESS is formulated
as a function of depth of discharge. Some papers have proposed an
RL-based strategy for energy arbitrage, while considering BESS degra-
dation cost [27–30]. Note that in the current work, we constrain the
annual number of BESS cycles, reserving considering detailed modeling
of BESS degradation costs for future work.

2.2. Research gaps and contributions

Table 1 shows an overview of previous works on energy arbitrage.
In terms of target market scenario, we focus on energy arbitrage in the
imbalance settlement mechanism. The recent change in the imbalance
price calculation [3] and an increase in imbalance prices have opened
up a new arbitrage opportunity in electricity markets. Fig. 1 demon-
strates the rise in Belgian imbalance prices in recent years. However,
only few studies have been conducted on energy arbitrage in the
imbalance settlement mechanism, due to the high risk involved in this
arbitrage. The authors in [2] first implement a new tailored encoder–
decoder architecture to generate improved probabilistic forecasts of
the future system imbalance. Then, they solve a bi-level robust opti-
mization problem to maximize the revenue from the participation of a
BESS in the imbalance settlement. The authors in [7] introduce a novel
stochastic model predictive control (MPC) approach to optimize the
revenue of BESS in the imbalance settlement mechanism by taking into
account battery degradation costs and risk aversion. More specifically,
an attention-based recurrent neural network is used to predict the
system imbalance and imbalance price. In [8], control strategies are
proposed for seasonal thermal energy storage systems to interact with
day-ahead and imbalance markets: MPC-based and RL-based controllers
are developed for each market interaction to compare the performance
of these two controllers in the different electricity markets.

As indicated in Table 1, regarding energy arbitrage algorithm
methodology, most previous research works adopt model-based op-
timization methods to solve the arbitrage problem. These methods
sometimes require linearization techniques (such as piecewise linear
approximation) to transform a nonlinear problem into a linear or
mixed-integer convex problem. However, applying these techniques
may result in an intractable optimization problem or an inaccurate
approximation of the problem. Moreover, these model-based meth-
ods need a (probabilistic) forecaster for future imbalance prices to
address uncertainty in future prices. In stochastic optimization, such
3 
Fig. 1. The evolution of Belgian imbalance prices from 2018 to 2023. (For interpreta-
tion of the references to color in this figure legend, the reader is referred to the web
version of this article.)

uncertainties can be handled by generating a set of scenarios. Yet, as
imbalance prices are highly uncertain, a large number of scenarios are
required to correctly reflect the imbalance price distribution, which
increases the computational burden to the extent that the problem
may become computationally intractable. On the other hand, although
robust optimization does not need as many scenarios [31], its obtained
solution might be a very conservative strategy and not necessarily the
most economical one [32]. Another limitation of the mentioned studies
is that only a few of them propose a risk-sensitive arbitrage strategy
while considering the lifetime of BESS.

To avoid problems of model-based optimization methods, RL meth-
ods can be used. RL can learn a (near-)optimal policy for a stochas-
tic nonlinear environment by directly interacting with the environ-
ment [33]. In RL, there is no special hypothesis regarding the reward
function: it can be linear or nonlinear. In contrast to model-based opti-
mization methods, model-free RL methods do not need prior knowledge
or an explicit model of the environment. The agent, by interacting with
the environment, captures uncertainties and estimates system dynam-
ics. Another advantage of RL methods is that after training the RL agent,
its learned policy can be directly used in a new test setting without
requiring solving any optimization problem. Therefore, RL methods are
efficient tools for real-time control [34]. The usage of distributional RL
elevates our proposed framework above previous RL-based arbitrage
methods by providing a framework for risk management and achieving
state-of-the-art performance.

3. Problem formulation

In this section, the imbalance settlement mechanism is explained in
detail (Section 3.1) and the Markov decision process (MDP) formulation
of the energy arbitrage problem in the imbalance settlement mechanism
is provided (Sections 3.2 and 3.3).

3.1. Imbalance settlement mechanism

BRPs are responsible for continuously balancing their individual
demand and supply. But sometimes BRPs deviate from their traded
consumption and generation due to uncertainties in the grid. The
total imbalance volume of all BRPs in a single control area is called
the total system imbalance [35]. Positive and negative values of the
system imbalance indicate the excess and shortage of the generation,
respectively. A TSO corrects the system imbalance in real-time by
activating reserve capacities offered in the balancing market [36].
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Table 1
Comparison with literature.

Paper Algorithm category Market Risk-sensitive BESS lifetime Time resolution

Model-based optimization RL DAa IDb RTc BMd ISMe

[13] ✓ ✓ ✓ ✓ ✗ ✓ 15 min
[16] ✓ ✓ ✓ ✗ 1 h
[23] ✓ ✓ ✓ ✓ ✓ ✓ unknowng

[17] ✓ ✓ ✗ ✓ 15 min
[24] ✓ ✓ ✓ ✓ ✗ 1 h
[25]h ✓ ✓ ✓ ✗ ✓ 5 min
[2] ✓ ✓ ✓ ✗ 15 min
[11] ✓ ✓ ✗ n/af 1 h
[18] ✓ ✓ ✓ ✗ ✗ 1 h
[12]h ✓ ✓ ✓ ✗ ✗ 1 h
[14] ✓ ✓ ✓ ✓ ✓ 1 h
[7]h ✓ ✓ ✓ ✓ ✓ 15 min

[8]h ✓ ✓ ✓ ✓ ✗ n/a 15 min
[20] ✓ ✓ ✓ ✗ ✗ 1 h

[19] ✓ ✓ ✗ ✗ 1 h
[21] ✓ ✓ ✗ ✗ 15 min
[26] ✓ ✓ ✗ ✓ 1 h
[27] ✓ ✓ ✗ ✓ 1 h
[28] ✓ ✓ ✗ ✓ 1 h
[29] ✓ ✓ ✗ ✓ 1 h
[30] ✓ ✓ ✓ ✗ ✓ 1 h
[15] ✓ ✓ ✓ ✗ ✗ 15 min
Ours ✓ ✓ ✓ ✓ 1 min

a DA: day-ahead market.
b ID: intraday market.
c RT: real-time market.
d BM: balancing market.
e ISM: imbalance settlement mechanism.
f n/a: not applicable; paper does not consider BESS.
g The paper does not explicitly list the timescale used.
h These papers studied energy arbitrage within a single market for multiple markets.
a

m
h

i
n

o
b

A TSO charges BRPs for their imbalance at a price specific to the
imbalance settlement period (15 min in most European markets). This

echanism is known as imbalance settlement. The imbalance price is
ependent on the reserve volume activated by the TSO [37]. In each im-
alance settlement period, the negative imbalance price is equal to the

highest activated upward reserve offer (marginal incremental price),
and the positive imbalance price is determined by the lowest activated
downward reserve offer (marginal decremental price) [38]. Three main
imbalance pricing methodologies are used in various countries: (1) dual
pricing; (2) two-price settlement; and (3) single pricing [38].

In the dual pricing method, the imbalance price is different for pos-
itive and negative imbalances. BRPs penalize for negative and positive
imbalances using the marginal incremental price (MIP) and marginal
decremental price (MDP), respectively. This pricing method motivates
BRPs to keep the balance within their own portfolio without being
concerned about the total system imbalance. The main drawback of
this method is that there is no incentive for BRPs to deviate from
heir nomination to restore the grid. For instance, if the total system

imbalance is positive and there is a BRP that can reduce this imbalance,
then this BRP is not incentivized, but even penalized for deviating from
ts day-ahead nomination.

In the two-price settlement method, similar to the dual pricing
method, different imbalance prices are considered for each imbalance
irection. The difference with the dual pricing method is that if the
mbalance direction of BRPs is opposite to the total system imbalance
irection, the imbalance price is the same as the day-ahead price.
lthough in this pricing method, BRPs do not face penalties due to their

deviation for helping TSO with restoring the grid, the imbalance price
is not attractive to create a portfolio imbalance for supporting the grid
(typically, day ahead prices are lower than imbalance prices).

In the single pricing method, the imbalance price is the same for
oth imbalance directions and depends on the total system imbalance.
his pricing method provides an opportunity for BRPs to reduce their
4 
cost by supporting the grid. For instance, if the total imbalance price
is negative and a BRP creates a positive imbalance, the BRP will
receive an MIP (imbalance price) which is usually higher than the day-
head price. In some countries, e.g., Germany, despite using the single

pricing method, arbitrage in the imbalance settlement mechanism is
prohibited and market players are expected to trade honestly in the
markets [39]. Nonetheless, the arbitrage in the imbalance settlement

echanism is a win-win situation for both BRPs and TSOs. On the one
and, BRPs can profit from the arbitrage and indirectly reduce the total

system imbalance. On the other hand, this decrease in the total system
mbalance results in a lower imbalance price since the TSO does not
eed to activate more expensive reserve offers.

As mentioned earlier, ENTSO-E aims to harmonize the imbalance
settlement mechanism in Europe by implementing the single pricing
method for calculating the imbalance price with a 15 min imbalance
settlement period. For this reason, the focus of this paper is on the
single pricing method. The Belgian imbalance settlement mechanism
is a good case study for this research work because since the beginning
of 2020, it adopts the single pricing method with a 15 min settlement
period [35].

3.2. MDP formulation without cycle constraint consideration

The energy arbitrage problem can be formulated as an MDP. An
MDP provides a mathematical framework for stochastic sequential
decision-making problems and is modeled by a tuple ( ,,, , 𝛾),
where  is the state space,  is the (discrete) action space,  ∶  ×
 → R represents the immediate reward function,  ∶  ×  ×  →
[0, 1] denotes the unknown state transition probability distribution, and
𝛾 ∈ (0, 1] is the discount factor [40]. At each time step 𝑡, the agent
bserves the environment state 𝑠𝑡 ∈  and takes an action 𝑎𝑡 ∈ 
ased on the current state. As a consequence of the taken action, the

agent receives a reward value (𝑠 , 𝑎 ) and moves to a new state 𝑠 ∈
𝑡 𝑡 t+1
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 with the probability determined by the state transition probability
istribution (𝑠t+1|𝑠𝑡, 𝑎𝑡). In the energy arbitrage problem, the agent
s a decision maker who decides about the charging/discharging of
ESS at each time step. The environment is the external context with
hich the agent interacts (electricity markets, grid, etc.). We define

he MDP formulation of the energy arbitrage problem in the imbalance
ettlement mechanism without cycle constraints as follows:

(i) State: The state at each time step is expressed as

𝑠𝑡 = (𝑇qh, qh,mo, SOC𝑡, 𝜋̂imb
𝑡 ) (1)

where 𝑇qh represents the minute of the quarter hour, qh is the
quarter hour of the day, mo is the month of the year, SOC𝑡 is the
SoC of BESS at time 𝑡, and 𝜋̂imb

𝑡 is the forecasted imbalance price
of the current quarter-hour. We used a forecast of the imbalance
price because the real imbalance price of the quarter hour is only
calculated once the quarter hour is over.

(ii) Action: We consider a discrete action space with 3 possible
actions, as follows:

𝑎𝑡 ∈ ,  = {−𝑃max, 0, 𝑃max} (2)

where 𝑃max is the maximum (dis-)charging power of the BESS.
The action 𝑎𝑡 represents a decision on the charging/discharging
power at time 𝑡. We assume discrete actions, based on lessons
learnt from [41]. That study investigated the emergence of ex-
tremal switching, or bang–bang behavior, in continuous control
RL. They showed competitive performance of RL methods with
discrete action space (bang–bang policy) on standard continuous
control benchmarks. For this reason, we focus on a discrete
action space, leaving further investigation of continuous control
in our arbitrage problem as future work.
Further, the agent’s actions must respect the maximum and
minimum charge and discharge constraints, as well as SoC limits.
There are several ways to incorporate such constraints into RL,
e.g., adding penalty terms to the reward function [42]. However,
the main challenge of adding penalty terms, apart from the
difficulty of tuning their weights in the reward function, is that
they represent soft penalties. In other words, they only encour-
age meeting constraints, rather than enforcing them. To strictly
enforce these constraints, we used a function that overrides
the action taken by the agent if need be. The function clips
the charging power within the feasible range defined by the
maximum and minimum limits. Similarly, it blocks the charge
action when the SoC exceeds the defined maximum, and the
discharge action when the SoC falls below the defined minimum.

(iii) Reward: The objective of the agent is to maximize the revenue
by buying energy when the imbalance price is low and selling
it when the imbalance price is high. Hence, the reward function
to be maximized is the negative of the energy cost, defined as
follows

𝑟𝑡 = −𝑎𝑡𝜋imb
𝑡 (3)

where 𝜋imb
𝑡 is the real imbalance price of the quarter hour in

which 𝑡 lies.
(iv) State transition function: In the MDP framework, system dynamics

are described by a state transition probability function  . This
probability function is unknown in the energy arbitrage problem
because of uncertainties in the imbalance price. The agent strives
to estimate the state probability distribution through interac-
tions with the environment. However, the state transition for
SOC𝑡 is controlled by 𝑎𝑡 and can be explicitly formulated as
below.

SOCt+1 =

⎧

⎪

⎨

⎪

SOCtemp
t+1 ∶ 0 < SOCtemp

t+1 < 1
0 ∶ SOCtemp

t+1 < 0
temp

(4)
⎩

1 ∶ SOCt+1 > 1 m

5 
SOCtemp
t+1 = SOC𝑡 + (max(𝑎𝑡, 0)𝜂cha +

min(𝑎𝑡, 0)
𝜂dis

) 𝛥𝑡
𝐶BESS

(5)

where 𝐶BESS is the maximum capacity of the BESS, and 𝜂cha and
𝜂dis, denote the charging and discharging efficiency of the BESS,
respectively.

3.3. MDP formulation with cycle constraint consideration

Frequent charging/discharging cycles cause an extra cost because
they expedite the degradation of BESS. Modeling the aging of BESS is
rucial as it indicates a capital loss of BESS investment costs [43]. Due

to the dependence of battery lifetime on its operational strategy, the
lifetime of a BESS plays an important role in the financial evaluation
of the energy arbitrage strategy. Usually, the lifetime of a BESS is
determined by the number of complete charge–discharge cycles before
its nominal capacity becomes lower than a certain level of its initial
rated capacity [44]. Thus, we constrain the daily number of cycles,
since it aligns with the designed lifetime and guarantee provided
y manufacturers [45]. The MDP formulation with cycle constraint

consideration is described next.

(i) State: The state is given by

𝑠𝑡 = (𝑇qh, qh,mo, SOC𝑡, 𝜋̂imb
𝑡 , 𝑛cyc

𝑡 ) (6)

𝑛cyc
𝑡 =

t-1
∑

i=0

|min(𝑎𝑖, 0)|𝛥𝑡
𝐶BESS

(7)

where 𝑛cyc
𝑡 is the daily consumed number of cycles, calculated

using (7).
(ii) Action: Similar to the MDP formulation without cycle constraints,

the action space is discrete with 3 possible actions. The action
is determined as follows

𝑎𝑡 = 𝐵(𝑢𝑡, 𝑛cyc
𝑡 ), 𝑢𝑡 ∈  = {−𝑃max, 0, 𝑃max} (8)

𝐵(𝑢𝑡, 𝑛cyc
𝑡 ) =

{

0 ∶ 𝑢𝑡 < 0 ∧ 𝑛cyc
𝑡 > 𝑛cyc

max
𝑢𝑡 ∶ 𝑒𝑙 𝑠𝑒 (9)

where 𝑛cyc
max is the maximum allowed daily number of cycles and

𝐵(.) is a backup controller to ensure the daily cycle constraint.
The backup controller is used to override the agent action (𝑢𝑡)
when the agent wants to discharge the battery and the daily
number of cycles exceeds the maximum allowed value. The in-
troduced backup controller 𝐵(.) is part of the explained function
in Section 3.2 to enforce the cycle constraint.

(iii) Reward: The reward function definition is the same as that of the
MDP formulation without cycle constraint.

(iv) State transition function: Also the state transition function is the
same as that of the MDP formulation without cycle constraint.

4. Reinforcement learning methods

Recently, RL, as a model-free method, has attracted researchers’
ttention due to its remarkable performance in solving complex sequen-
ial decision-making problems such as playing games, robotic control,

and autonomous driving. The goal in RL is to learn a policy that
aximizes the expected long-term reward. RL methods have been suc-

essfully applied to many energy problems such as the smart charging
f EVs [46,47], demand response [48], frequency control [49], building

control [50], etc. Generally, model-free RL methods can be classi-
fied into two categories: value-based methods (e.g., Q-learning, fitted
Q-iteration (FQI), DQN, etc.) and policy gradient methods (e.g., actor–
critic, deep deterministic policy gradient (DDPG), soft actor–critic
(SAC), etc.) [51]. In value-based methods, the Q- (or V-)function is
earned (estimated) and the action is chosen based on the learned Q-
or V-)function as to maximize it. On the other hand, policy gradient
ethods directly learn the policy. In [52], the SAC method has been



S.S. Karimi Madahi et al.

n
e
m
i
g
a

m
l
i
o

b

a
p
t

t

u
s
b
m
o
u
p
p
p

p
e

Journal of Energy Storage 104 (2024) 114377 
proposed as an off-policy actor–critic method. In SAC, the policy is
learned by an actor network and the Q-function is estimated by a critic
etwork. The actor aims to maximize the expected reward as well as the
ntropy of the actor, to encourage the agent to explore the environment
ore. In this paper, we will use the DQN (as a state-of-the-art method

n value-based methods) and SAC (as a state-of-the-art method in policy
radient methods) methods to solve the arbitrage problem formulated
s an MDP.

Next, we first highlight main advantages of using RL methods over
odel-based optimization methods to solve the defined arbitrage prob-

em. Subsequently, we detail the two RL methods adopted in this paper,
.e., DQN and SAC. Finally, we introduce the distributional perspective
n RL and the risk-sensitive RL framework.

4.1. Why RL methods?

Model-free RL methods have two main advantages over model-
ased optimization methods in the defined BESS arbitrage problem:

(1) Dealing with non-convexity: in the defined BESS arbitrage prob-
lem, there are two parts that may introduce non-convexities: (a)
the objective function, and (b) the effect of the agent’s actions
on the imbalance price. In the risk-neutral case, the objective
function is defined to maximize the arbitrage revenue (Eq. (3)),
which is a linear objective function. It is worth to mention that
although in this paper the objective function in the risk-neutral
scenario is linear, it can generally be nonlinear or non-convex.
On the other hand, in the risk-averse case, the objective is to
optimize the weighted sum of the arbitrage profit and a risk
measure, which can lead to a nonlinear/non-convex objective
function, as some risk metrics are non-convex (e.g., value-at-
risk (VaR)). To solve the risk-involved arbitrage problem using
model-based optimization techniques, the problem must be for-
mulated either using convex risk metrics (mainly conditional
value-at-risk (CVaR)) or applying linear approximation to non-
convex risk metrics. For this reason, the choice of risk measure
functions in the model-based optimization methods is mainly
limited to convex metrics, specifically CVaR. Although the cycle
constraint is linear in this paper, a more detailed degradation
modeling of the battery can introduce another source of non-
linearity to the problem (e.g., BESS degradation cost in [7]).
Now, regarding the effects of the agent’s actions on imbalance
price: at each time step, the agent’s action can affect the overall
system imbalance, which ultimately implies an impact on the
imbalance price for the relevant quarter-hour. By considering
this impact in the arbitrage problem, the problem becomes a
non-convex optimization problem due to a set of non-convex
constraints and partially known model parameters in the market
model [9]. In this research work, for simplicity, we assume that
the agent is of a small scale and does not significantly affect the
system imbalance. In other words, our assumption is that the
agent is price-taker. Considering a price-maker agent is one of
our directions for future work. Similarly, in the current work,
for simplicity we ignore the potential effect of other competing
agents on the imbalance price, which would introduce another
source of nonlinearity to the problem.
In contrast to model-based optimization methods, model-free RL
methods directly learn a (near-)optimal policy for a stochastic
nonlinear environment. These RL methods do not have any spe-
cific hypothesis concerning the reward function, which means
they can address sequential non-convex optimization problems
without applying linearization techniques. This means that the
proposed control framework does not impose any restriction on
the definition of nonlinear objective functions or the use of non-
convex risk metrics. Also, RL methods do not require a system
model (such as an electricity market model) and can implicitly

learn this model through interaction with the environment.

6 
(2) Tractability and computational complexity: Model-based optimiza-
tion methods mostly handle uncertainties using stochastic opti-
mization or robust optimization. Nevertheless, since imbalance
prices are highly uncertain, numerous scenarios are required
to correctly reflect the imbalance price distribution, which in-
creases the computational burden to the extent that the problem
may become computationally intractable. On the other hand,
although robust optimization may not need as many scenarios,
its obtained solution can tend to be extremely cautious.
That computational time at inference is a notable concern in
the considered arbitrage problem in the imbalance market, given
the relatively short decision-making time interval (1 min in our
case). In this setting, we believe RL methods are suitable for real-
time control, given their faster inference compared to model-
based optimization methods. In RL methods, during inference,
the trained model is directly used to take an action at each time
step without the need for repeatedly solving an optimization (as
seen in model-based optimization methods).

4.2. DQN

Classical tabular RL methods, e.g., Q-learning, suffer from an issue
known as the curse of dimensionality. Since these methods can only be
pplied to problems with discrete state space, they cannot be used for
roblems with high-dimensional or continuous state space. In addition,
hese methods usually need handcrafted state representations [51].

To overcome these limitations, the DQN method uses a deep neural
network as a function approximator to estimate the Q-value func-
tion parametrized by 𝜃. The Q-value function 𝑄𝜃(𝑠𝑡, 𝑎𝑡) is learned by
minimizing the following loss function:

𝐿𝑄(𝜃) = E(𝑠𝑡 ,𝑎𝑡 ,𝑟𝑡 ,𝑠t+1)∼

[

(𝑟𝑡 + 𝛾 max
𝑎

𝑄𝜃′ (𝑠t+1, 𝑎) −𝑄𝜃(𝑠𝑡, 𝑎𝑡))2
]

. (10)

The first benefit of DQN is its stability in learning. In [53], two
echniques are used to stabilize the learning process. First, the target

Q-function 𝑄𝜃′ (𝑠𝑡, 𝑎𝑡) is used to calculate next state–action values in
Eq. (10). Parameters of the target Q-function (𝜃′) are periodically
pdated with the most recent 𝜃. Second, agent past transitions are
tored in an experience replay buffer () and for training 𝑄𝜃 , mini-
atches of experiences are sampled from . Another benefit of the DQN
ethod is that this method is an off-policy method. The key advantage

f off-policy methods is their capacity to learn from historical data since
sing the current experiences as the training set can easily overfit the
olicy because the training samples are not independent [54]. In an off-
olicy setting, a policy learned by the agent is different from a behavior
olicy used for collecting historical data. Using past transitions for

training can significantly improve sample efficiency.

4.3. SAC

Value-based methods have some limitations. The application of
these methods is limited to problems with a discrete and low-
dimensional action space. Also, these methods learn a deterministic
policy, which means for a given state, an action taken by the agent
is always the same. Thus, keeping a balance between exploration and
exploitation in value-based methods is challenging. Policy gradient
methods solve these limitations by learning a policy network that
outputs the probability of taking actions in each state. From the existing
olicy gradient methods, we use SAC because of its superior sample
fficiency and stability. In this off-policy method, the policy is learned

by an actor network 𝜋𝜙 and the Q-function is approximated by a critic
network 𝑄𝜃 . The objective of the actor is to maximize the expected
reward as well as maximize the entropy of the actor to encourage the
agent to further explore the environment. The loss function of the actor
network (𝐽𝜋) is given by
𝐽𝜋 (𝜙) = E𝑠∼,𝑎∼𝜋𝜙 [𝛼 ln𝜋𝜙(𝑎|𝑠) −𝑄𝜃(𝑠, 𝑎)] (11)
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Fig. 2. The overview of the proposed control framework.
Fig. 3. The learning process of the four RL methods for the risk-neutral without cycle constraint scenario. (a) The average daily profit of the RL methods. (b) The average daily
number of cycles. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
The critic network estimates the soft Q-value function. The loss function
of the critic network (𝐿𝑄) is formulated as follows:

𝐿𝑄(𝜃) = E(𝑠𝑡 ,𝑎𝑡)∼[(𝑦𝑡 −𝑄𝜃(𝑠𝑡, 𝑎𝑡))2] (12)

𝑦𝑡 = 𝑟𝑡 + 𝛾E𝑎t+1∼𝜋𝜙 [𝑄𝜃′ (𝑠t+1, 𝑎t+1) − 𝛼 ln𝜋𝜙(𝑎t+1|𝑠t+1)] (13)

𝜃′ = 𝜏 𝜃 + (1 − 𝜏)𝜃′ (14)

In Eq. (13), 𝑦𝑡 is an estimated soft-Q-value that is calculated by a mod-
ified Bellman equation (the so-called soft Bellman equation). Similar to
7 
the DQN method, the target Q-function is used to calculate 𝑦𝑡. After
each update of 𝑄𝜃 , the parameters of 𝑄𝜃′ are updated according to
Eq. (14) with 𝜏 ≪ 1 to slowly track the learned network [55].

4.4. Distributional RL

A distributional perspective on RL was first introduced in [56]. In
distributional RL methods, the probability distribution over returns is
estimated rather than a point estimate of the mean. Distributional RL
methods offer several advantages, including more stable learning [56],
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Fig. 4. The projection of the learned policy in the risk-neutral without cycle constraint scenario for (a) DQN, (b) DDQN, (c) SAC, and (d) DSAC. (For interpretation of the references
to color in this figure legend, the reader is referred to the web version of this article.)
mitigating Q-value overestimation [57], and providing a framework for
risk-sensitive learning [58]. In the vanilla DQN method, the core idea
is to estimate the Q-value function 𝑄𝜃 . Going beyond the vanilla DQN
method, the distributional DQN (DDQN) method learns the probability
distribution of returns (𝜃) using the distributional Bellman equation
as follows [56]:

𝐿(𝜃) = E(𝑠𝑡 ,𝑎𝑡)∼[𝐷KL( 𝜃′ (𝑠𝑡, 𝑎𝑡) ∥ 𝜃(𝑠𝑡, 𝑎𝑡))] (15)

 𝑍(𝑠𝑡, 𝑎𝑡)
𝐷
= 𝑟𝑡 + 𝛾 max

𝑎
E𝑍∼𝜃′

[𝑍(𝑠r+1, 𝑎)] (16)

where  is the distribution of returns, 𝐴 𝐷
= 𝐵 denotes that two random

variables 𝐴 and 𝐵 have an equal probability distribution, and  𝜃
indicates the probability distribution of  𝑍. The distribution of returns
can be modeled as a categorical distribution as below.

𝑍(𝑠𝑡, 𝑎𝑡) =
{

𝑧𝑖
|

|

|

𝑧𝑖 = 𝑉min +
𝑉max − 𝑉min

𝑁 − 1 𝑖, 0 ≤ 𝑖 < 𝑁
}

(17)

In Eq. (17), 𝑉min and 𝑉max are the maximum and minimum values
of random returns, respectively, and 𝑁 is the number of bins. In
distributional SAC (DSAC), the critic network learns the probability
distribution of soft returns. The loss function of the critic network in
DSAC is similar to Eq. (15), but the calculation of  𝑍(𝑠𝑡, 𝑎𝑡) differs as
follows:

 𝑍(𝑠𝑡, 𝑎𝑡)
𝐷
= 𝑟𝑡 + 𝛾E𝑎t+1∼𝜋𝜙 ,𝑍∼𝜃′

[

𝑍(𝑠t+1, 𝑎t+1) − 𝛼 ln𝜋𝜙(𝑎t+1|𝑠t+1)
]

(18)

Since the expectation of 𝑍(𝑠𝑡, 𝑎𝑡) over 𝜃 is equal to 𝑄(𝑠𝑡, 𝑎𝑡), the loss
function of the actor network is modified as below.

𝐽𝜋 (𝜙) = E𝑠∼,𝑎∼𝜋𝜙 [𝛼 ln𝜋𝜙(𝑎|𝑠) − E𝑍∼𝜃
[𝑍(𝑠, 𝑎)]] (19)

4.5. Risk-sensitive RL

By approximating the probability distribution of returns, distribu-
tional RL presents a possibility for learning a risk-averse policy. In a
8 
risk-neutral RL framework, the agent in each state takes an action that
aims to maximize the expected return (Q-value). On the other hand,
in the risk-sensitive RL framework, the agent takes an action with the
lowest associated risk. The main risk in the arbitrage problem is related
to forecasted imbalance prices. The greater the inaccuracy in predicted
prices, the higher the associated risk of taking the wrong action.

Risk measures can be used to assess the level of risk associated with
a distribution of returns [59]. The loss function of the actor network in
the risk-sensitive DSAC can be formulated as follows:

𝐽𝜋 (𝜙) = E𝑠∼,𝑎∼𝜋𝜙

[

𝛼 ln𝜋𝜙(𝑎|𝑠) − E𝑍∼𝜃
[𝑍(𝑠, 𝑎)] − 𝛽 𝛹 [𝑍(𝑠, 𝑎)]

]

, (20)

where 𝛹 [.] represents a risk measure function and 𝛽 is a parameter that
controls the trade-off between the expectation value and risk. 𝛽 = 0
represents the risk-neutral attitude of the agent. As 𝛽 increases, the
agent becomes more risk-averse. In this paper, value-at-risk (VaR) is
applied as the risk measure function:

VaR𝜌(𝑍) = inf {𝑧|CDF𝑍 (𝑧) ≥ 𝜌}, (21)

where 𝜌 ∈ (0, 1] is a confidence level. We will set 𝜌 = 0.1 in this paper.

5. Simulation results

We will evaluate the performance of the proposed control frame-
work, is explained in Sections 3 and 4, for the energy arbitrage prob-
lem.

5.1. Experimental setup

Fig. 2 shows the overview of the proposed control framework,
which we test on the Belgian imbalance in 2022 extracted from Elia’s
website.2 As mentioned in Section 3.1, Elia publishes two imbalance

2 https://www.elia.be/en/grid-data/data-download-page?csrt=783739960
382611489.
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Table 2
Method hyperparameters.
Shared DQN SAC

Parameter Value Parameter Value Parameter Value

Discount factor 𝛾 0.9995 Learning rate 5 × 10−4 Actor learning rate 2 × 10−5
Soft update factor 𝜏 0.1 Critic learning rate 1 × 10−4
Experience buffer size 1 × 106 Initial 𝛼 1
Mini-batch size 16 384 𝛼 learning rate 3 × 10−4
Network hidden layer size [256,128]
𝑉max 5000
𝑉min −5000
𝑁 11
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prices: 15-min-based and 1-min-based prices. The reference price for
he imbalance settlement of BRPs is the 15-min-based price which is the
eal imbalance price calculated at the end of the quarter-hour period.
he 1-min-based prices, on the other hand, are calculated based on non-
alidated data, based on the instantaneous system imbalance and prices
f cumulative activated regulation volumes on a minute basis. These
-min-based prices are published to provide additional information to
RPs.3 We use these non-validated prices as forecasted imbalance prices

of the corresponding quarter-hour period. Since the granularity of the
forecasted imbalance prices is one minute, the RL agent takes an action
every minute. In this work, the day-ahead schedule for the battery is
set to zero which means that the battery does not trade in the day-
ahead market. However, future work will extend our proposed control
framework for arbitrage in both the day-ahead market and imbalance
settlement. To train and validate the proposed control framework, the
imbalance price dataset is split as follows: the first 20 days of each
month are considered as the training set, the 21st day to the 25th day
f each month are considered as the validation set, and the remaining

days of each month are used as the test set. The considered BESS has
 power rating of 1 MW and a maximum capacity of 2 MWh with a
ound-trip efficiency of 0.9 for both charging and discharging. Since
he maximum allowed annual number of cycles for the BESS is 400,
he maximum daily number of cycles is set to 1.1. The RL methods
re trained with 50 000 episodes and each episode constitutes a full

day. The hyperparameters used for the methods are listed in Table 2.
The proposed control framework is implemented in Python using the
PyTorch package.

We design experiments to answer the following questions:

• Q1: What is the learned arbitrage strategy when there is no limit
on the daily number of cycles?

• Q2: How does a daily number of cycles affect the learned arbi-
trage strategy?

• Q3: What is the effect of the risk-averse perspective on the learned
arbitrage strategy?

5.2. Arbitrage strategy without cycle constraint (Q1)

The learning process of the RL methods for the risk-neutral scenario,
without considering the cycle constraint, is illustrated in Fig. 3. The
erformance of the trained RL methods on the test set is indicated in

Table 3. Results show that the distributional RL methods outperform
he standard RL methods. The reason behind this is that estimating
he probability distribution of returns, rather than the expectation of
eturns, can provide a more stable training target. Also, the distribu-
ional RL methods can mitigate instability in the Bellman optimality
perator by learning probability distribution of returns. The DDQN
ethod increases the average daily profit by 17% compared to the
QN method. DSAC improves the proportional reward (defined as the

3 https://www.elia.be/-/media/project/elia/elia-site/grid-data/balancing/
0190827_end-user-documentation-elia1-minute-publications.pdf.
 e
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ratio of average daily profit to average daily number of cycles) by 2.1%
compared to SAC. The comparison between the performance of the dis-
ributional and vanilla DQN, and SAC, indicates that the distributional
erspective can enhance DQN results to a greater extent. The reason

is that the SAC method mitigates instability in the Bellman optimality
operator by using an actor network instead of the max operator in the

ellman equation. Therefore, the improvement in the DSAC results is
mainly due to stable training target for the critic network. However, the
distributional perspective can boost the performance of the vanilla DQN
by both providing stable training targets and mitigating instability in
the Bellman optimality operator. Results also highlight the superiority
of SAC over DQN. This is because SAC can mitigate Q-value overes-
timations in DQN by replacing the max operator (Eq. (10)) with the
expectation operator (Eq. (13)) in the Bellman equation.

To analyze and study the learned policy of the four RL methods,
the policy heatmaps are illustrated in Fig. 4. Since SoC and forecasted
imbalance price are the two most determinative features for the agent,
we show the learned policy with respect to these two input features,
which are also informative to interpret the policy. Fig. 4 shows that
he SAC and DSAC methods can learn a more meaningful and smooth
olicy compared to the DQN and DDQN methods. For DQN and DDQN,

the Q-value function overestimates the value of rarely seen states and
out-of-distribution (OOD) actions in these rare states due to the max
operator and the reliance of the estimated Q-values on inputs from
the same distribution as its training set. This overestimation results in
policies that choose OOD actions. According to Fig. 5, the forecasted
imbalance price rarely goes beyond 850 €/ MWh (the probability is
%). It means that the DQN and DDQN methods overestimate Q-values

for this area and take OOD actions. Figs. 4 and 5 reveal some corre-
ation between the learned policy by DSAC and the price distribution.
he agent always charges the BESS when the price is within the lower
% quantile (lower than −60 €/ MWh), regardless of the SoC level. The
gent never takes the charging action for the 25% highest prices (prices
igher than 380 €/ MWh), even if the BESS is empty. The BESS is
lways discharged when the price lies in the upper 5% quantile (higher
han 640 €/ MWh). For the median price (roughly 220 €/ MWh), the
ESS is discharged if the SoC is higher than 60%, does nothing when
he SoC is between 60% and 50%, and is charged if the SoC is lower
han 50%. Generally, the agent learns a milder slope boundary for the
ischarge action. If the BESS with a low SoC level is discharged, the
gent needs to quickly recharge the BESS to make sure it can still make
oney. This quick recharging increases the risk of charging at a higher
rice. Therefore, by decreasing the SoC, the area of idle action becomes
arger.

5.3. Arbitrage strategy with cycle constraint (Q2)

Fig. 6 shows the learning process of the RL methods for the risk-
neutral scenario when the limitation is applied to the daily number of
cycles. Similar to the previous scenario, the DSAC method surpasses
other methods by converging to a higher reward with a fewer number
of cycles. According to Table 3, although the average daily profit of the

SAC method is less than that of the SAC method, the DSAC method
arns this profit by consuming fewer number of cycles. In other words,

https://www.elia.be/-/media/project/elia/elia-site/grid-data/balancing/20190827_end-user-documentation-elia1-minute-publications.pdf
https://www.elia.be/-/media/project/elia/elia-site/grid-data/balancing/20190827_end-user-documentation-elia1-minute-publications.pdf
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Table 3
Evaluation of RL methods on the test set in the risk-neutral scenarios.
Methods Without cycle constraint With cycle constraint

Profit
(€/per day)

Cycles
(per day)

Proportional
profit
(€/per cycle)

Profit
(€/per day)

Cycles
(per day)

Proportional
profit
(€/per cycle)

DQN 749.9 3.2 235.6 338.0 0.9 399.1
DDQN 877.5 3.2 275.9 397.2 1 405.9
SAC 1147.6 3.7 307.6 504.9 1.1 472.7
DSAC 1148.5 3.6 314.1 486.4 0.9 541.7
Fig. 5. The cumulative distribution of the imbalance price in 2022.

the DSAC method achieves a 14.6% improvement in the proportional
reward per cycle compared to the SAC method. Furthermore, the SAC
and DSAC methods converge faster than the DQN and DDQN methods
due to their efficient exploration. Since in DQN and DDQN the learned
policy is deterministic, the 𝜖-greedy exploration technique needs to be
used. On the other hand, the SAC and DSAC methods learn a stochastic
policy and use the learned probabilities for exploration. Thus, instead
of always considering a fixed exploration probability of 𝜖 for all states,
the probability of exploration depends on the current state. For a given
state, when the probability of one action is close to 1, the agent almost
always exploits and hardly explores. Conversely, when probabilities of
all actions are close to each other, the agent most of the time explores
to find the best action for that state. Consequently, the SAC and DSAC
methods are more data efficient than the DQN and DDQN methods.

The learned policy of DSAC when considering the cycle constraint is
illustrated in Fig. 7. Note that the displayed policy is a projection of the
learned policy, as the learned policy depends on more than two features
and thus is more complicated than the figures shown. The logic behind
the learned policy with and without the cycle constraint consideration,
which is charging at cheap prices and discharging at expensive prices, is
nearly identical. The main difference between these learned policies is
in the size of the idle action area. Adding the cycle constraint makes the
agent more conservative and increases the idle action area. Moreover,
by limiting the number of cycles, the agent recharges the BESS less
frequently due to reduced discharging. As a result, in this scenario, the
agent recharges the BESS at cheaper prices compared to the previous
scenario. To show the performance of the learned DSAC agents in a
real-life case, the learned agents are tested using data from March 31,
2022. As Fig. 8 shows, there is one major peak in the imbalance price
from 11:00 to 13:15 and one major valley from 13:30 to 17:00 on this
day. Both agents properly respond to these prices: the agent without
the cycle constraint reacts to roughly all fluctuations in the imbalance
10 
Table 4
Evaluation of DSAC method on the test set in the risk-sensitive scenario (𝛽 = 3).

Risk aversion Profit
(€/day)

Cycles
(per day)

Proportional profit
(€/cycle)

VaR value

𝛽 = 0 1148.5 3.6 314.1 −71
𝛽 = 0.3 796.7 2 399 −48.5
𝛽 = 1 593.9 1.25 474.6 −32.5
𝛽 = 3 518.9 1 518.9 −24.7

price, even small ones (such as the price fluctuation between 4:30 and
6:00, or between 20 and 21:30). However, another agent mostly focuses
on more significant fluctuations to limit the number of charging cycles.

5.4. Arbitrage strategy with risk management (Q3)

In risk-averse scenarios, the DQN and SAC methods cannot be
directly used as the output of their Q/critic network is a single value,
not a full distribution of returns. For this reason, we adopt distri-
butional methods for risk management. Since we already established
that distributional DQN exhibits lower performance than distributional
SAC in risk-neutral scenarios, we focus on distributional SAC in this
section. To answer Q3, we train the DSAC agent without the cycle
constraint consideration for varying 𝛽 values. Results in Table 4 show
that the risk-averse agent with 𝛽 =3 experiences a 54.8% reduction in
the average daily profit compared to the risk-neutral agent, but given
that it avoids risky behavior, we note a higher profit per cycle. Fig. 9
illustrates the difference between the learned critic network for the
fully risk-averse and risk-neutral agents. The learned critic network for
the fully risk-averse agent is narrower due to applying the risk measure
function (VaR) instead of the expectation. Also the VaR values align
with this observation: VaR values for the risk-neutral and fully risk-
averse critic networks are equal to −589.2€ and −240.5€, respectively.
The probability distribution of the hourly profit for test data is shown
in Fig. 10. Based on Fig. 10, the risk-averse agent successfully hedges
against the uncertainty in the imbalance price and mitigates the tail of
the hourly profit distribution.4 The VaR value of each distribution is
provided in Table 4.

Fig. 11 shows the learned risk-averse policy when 𝛽 = 3. Compared
to Fig. 4, we note that the idle area gets significantly larger: the agent
does not discharge the battery when the SoC is low. In this way, the
agent makes sure that the battery has always enough energy to inject
into the grid when the price is high. Moreover, there is an observable
change in the charge threshold that can be justified by Fig. 12. The
charge threshold for the risk-neutral agent ranges between 0 and 400
€/ MWh. However, Fig. 12 indicates that within this range, the actual
price is significantly uncertain and the chance of charging battery at a
price larger than the forecasted value is high. To mitigate this risk, the
risk-averse agent learns a lower charge threshold. The risk-averse agent
charges the battery at cheaper prices to minimize the risk of charging
at a high price resulting from inaccurate price predictions.

4 Note that both the left- and right-tails are reduced, although from the risk
perspective especially the lower (negative) return values should be avoided.
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Fig. 6. The learning process of the four RL methods for the risk-neutral with cycle constraint scenario, in terms of (a) the average daily profit, and (b) the average daily number
of cycles. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
Fig. 7. The projection of the learned policy in the risk-neutral with cycle constraint
scenario for DSAC. (For interpretation of the references to color in this figure legend,
the reader is referred to the web version of this article.)

6. Conclusion

In this paper, a distributional RL-based control framework for BESS
was proposed to obtain energy arbitrage strategies in the imbalance
settlement mechanism. In the proposed control framework, in addition
to considering a constraint on the daily number of cycles, the degree
of risk taking in the learned arbitrage strategy can be adjusted based
on the risk preference of BRPs. To evaluate the performance of the
proposed control framework, two state-of-the-art RL methods, i.e., DQN
and SAC, and their distributional variants have been implemented. The
results for the Belgian imbalance price in 2022 showed that the DSAC
method outperforms other methods (i.e., both the non-distributional
baselines as well as DDQN) in all experiments. DSAC improves the av-
erage daily profit in the experiment without cycle constraint by 53.1%
and in the experiment with cycle constraint by 43.9%, respectively,
compared to the (worst performing) DQN method. The dominance
of SAC over DQN in terms of data efficiency and mitigating Q-value
overestimation, stem from replacing the max operator in the Bellman
equation with the expectation operator. Moreover, the distributional
methods exhibit better performance than the standard RL methods
because they estimate the full probability distribution of returns rather
11 
than the expectation of returns, and they resolve instability in the
Bellman optimality operator.

In a first experiment, without considering cycle constraints, we
noted that the DSAC agent learned a smooth and rational policy: it
learned to charge the battery when the price is very cheap (within the
lower 7% quantile), discharge when the price is very expensive (within
the upper 5% quantile), and take the action based on the SoC for prices
in between. In a second experiment, including the cycle constraints, the
cycle-aware arbitrage strategy expectedly showed a larger ‘idle’ action
area compared to the case without cycle constraints, effectively leading
to a lower number of cycles used. The trained cycle-aware agent tended
to respond only to major peaks and valleys in the imbalance price due
to the limited number of cycles, while the cycle-unaware agent reacted
to almost all fluctuations in the imbalance price. Our study of risk-
sensitive agents showed that the risk-averse arbitrage strategies make
the distribution of hourly profit narrower and mitigate the tail of the
distribution. Indeed, the risk-averse agent charges the battery at lower
prices to mitigate the risk associated with inaccurate price forecasts and
avoid incurring higher charging costs.

Concerning open research questions and future work, we first note
that in this paper, the day-ahead schedule for the battery was set to
zero. Follow-up work will generalize the proposed control framework
by taking into account energy arbitrage between the day-ahead market
and the imbalance settlement mechanism. Studying the effect of consid-
ering a continuous action space instead of a discrete one forms another
next step to take.

Also, in this paper, we clipped actions post-hoc to satisfy constraints.
However, since this post-hoc correction step is not considered during
the learning process, it might impact the final performance of the
proposed framework. A possible direction to address constraints ex-
plicitly is to use differentiable implicit layers that enforce them. By
incorporating a differentiable layer into the agent network, the agent
network can be trained in an end-to-end fashion to satisfy constraints.

As we mentioned earlier, our current work can be extended by
modeling the agent as a price-maker one. For this purpose, the problem
needs to be formulated as a bi-level optimization problem, where the
upper level optimizes the arbitrage profit along with the risk mea-
sure, while the lower level is related to the balancing market clearing
problem. Considering a multi-agent system to study the effect of other
competing agents on the imbalance price is an additional direction for
future work.
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Fig. 8. The performance of the trained agent by the DSAC method on March 31, 2022 (a) without and (b) with considering cycle constraint. (For interpretation of the references
to color in this figure legend, the reader is referred to the web version of this article.)
Fig. 9. The learned critic network for the risk-neutral (𝛽 = 0) and risk-averse (𝛽 = 3)
agents. (For interpretation of the references to color in this figure legend, the reader
is referred to the web version of this article.)

Fig. 10. The probability distribution of hourly profit with and without the risk. (For
interpretation of the references to color in this figure legend, the reader is referred to
the web version of this article.)
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Fig. 11. The projection of the learned policy using DSAC for the risk-averse agent. (For
interpretation of the references to color in this figure legend, the reader is referred to
the web version of this article.)

Fig. 12. Actual imbalance price vs. forecasted imbalance price.
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Fig. A.13. The learning process of the DQN and FQI methods for the small experiment.
(For interpretation of the references to color in this figure legend, the reader is referred
to the web version of this article.)
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Appendix. Comparing DQN with FQI

The FQI method [60] is another widely used value-based method.
In [8], FQI is used to obtain a 15-min-based arbitrage strategy in the
imbalance settlement mechanism. In this section, a small experiment is
carried out to compare the performance of the DQN and FQI methods.
In this experiment, the methods are trained on the first nine days of
February and evaluated on February 10, 2022. The architecture of the
neural network used in the FQI method is the same as that of the
DQN method. The experience replay buffer size, number of iterations,
and number of episodes are 16 384, 400, and 500, respectively. In
accordance with Fig. A.13, both methods perform almost similarly.
However, the run time of the FQI method is roughly 5 times greater
than that of the DQN method and even gets worse by increasing the
experience replay size and the number of episodes. The reason for the
longer run time for FQI is its number of iterations: in each episode, the
Q network is trained for the mentioned number of iterations. Thus, the
FQI method is inappropriate for obtaining the arbitrage strategy.
13 
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