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I. INTRODUCTION 

The FlexMyHeat project aims at understanding the role that heat pumps and decentralized 
storage solutions will play in 2030 and 2050 as a source of flexibility for the national electricity 
system.  

The extra need for electricity by shifting from fossil fuel based heating systems to heat pumps 
in the upcoming years will increase peak loads in the Belgian electricity grids (on top of 
increased peak loads caused by other domains that get electrified such as mobility and 
industry) and will thus lead to challenges with respect to the energy security of supply, the net 
balance and (on a more local level) to congestion of the grid infrastructure. 

 
However, by properly controlling these heat pumps in combination with local storage solutions, 
unlocking the available flexibility, this challenge can be turned into an opportunity for the grid, 
contributing to the national and regional balance of the Belgian electricity system. 
 
The goal of FlexMyHeat is to quantitatively analyze the impact and value of the increased 
deployment of heat pumps and decentralized electrical/thermal storage in 2030 and 2050 on 
the Belgian electricity system, including proposed control/coordination strategies at (a 
combination of) various timescales, ranging from day-ahead markets to imbalance markets.  
 
This quantitative assessment is performed for different scenarios: 

• Business-as-usual: considering the heat pumps and possibly associated local storage 
as independent devices, only optimized for local objectives, i.e., maximizing PV self-
consumption. Thus, no dynamic interaction from the grid side to exploit their flexibility. 

• Individual smart control: optimized control of the flexibility opportunities offered by the 
heat pump or storage devices individually, so assuming that any other devices are only 
optimized for PV self-consumption maximization. 

• Integrated smart control: combined optimization of both the heat pump and storage 
devices for local and market objectives  
 

D1.1 focused on the business-as-usual scenarios while D2.1 focused on the individual smart 
control assessment of battery systems. In this deliverable, we present the results of the 
individual smart control of heat pumps and thermal storage systems, and the results for the 
integrated smart control scenarios. 

 

This deliverable is structured as follows: 

• Section II describes the creation of temperature setpoint profiles based on data from 
an apartment building. These profiles are used as input for the RL based control 
algorithms to assess that the user comfort is guaranteed.  

• Section III describes our MCTS based control algorithm for heat pumps to minimize 
energy costs, reduce peak loads while guaranteeing user comfort.  

• Section IV describes our MCTS based methodology for controlling heat pumps in 
combination with thermal storage. 

• Section V describes our methodology for the combined control of battery storage, heat 
pump and thermal storage. 

• Section VI describes the results for the 3 analyzed scenarios: smart heat pump control, 
combined control of heat pump and thermal storage, and integrated control of battery 
storage, heat pump and thermal storage. 

• Finally, in Section VII, we provide our conclusions and describe possible next steps. 
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II. INDOOR TEMPERATURE SETPOINT  

To control heat pumps and thermal storage, the temperature setpoint is used as an input to 
ensure user comfort. The temperature setpoint depends on user behavior and habits, and it 
can vary throughout the day. In this section, we analyze indoor temperature data from several 
apartments to obtain their daily temperature setpoint profiles. 

We used residential indoor temperature data collected from a 41-apartment building in 
Nivelles, Wallonia. More details about the dataset are provided in Deliverable D.1.1. We chose 
four different apartments for the study, with the following features: A001 – 2-bedroom, 87.74 
m²; B103 – 1-bedroom, 58.35 m²; C204 – 2-bedroom, 83.02 m²; and A401 – 3-bedroom, 
152.92 m². 

Setpoint profiles are obtained based on the extracted indoor air temperature (TEx) and 
supplied air temperature (TSu) profiles for each apartment over the entire year. As an example, 
TEx and TSu profiles for a specific month are shown in Figure 1. 

  

           

Figure 1 Temperature profiles for selected apartments for a chosen month 

 

Since hours with a sudden rise or drop in temperature indicate a change in the setpoint, these 
profiles can be used to derive the setpoint temperature profiles for each apartment, as 
illustrated in Figure 2. All profiles include two major peaks: a morning peak, which corresponds 
to the hours people spend preparing before work, and an evening peak, which corresponds to 
the hours after they arrive home. 
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Figure 2 Setpoint temperature profile for each apartment 
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III. HEAT PUMP CONTROL ALGORITHM 

As discussed in previous deliverables, a simple rule-based controller cannot effectively control 
heat pumps. In this section, we introduce our smart controllers for heat pumps, designed to 
minimize energy costs and reduce negative impacts on peak power demand while maintaining 
user thermal comfort. 

III.1.1.  MDP Formulation 

We model the sequential control problem of heating a building as a Markov Decision Process 
(MDP) to minimize the energy cost while staying close to the desired temperature set by the 
users [2]. The problem is partially observable because some variables (e.g., internal heat gains 
of the building) remain hidden from the control agent. We define the observable building state 
at each time step as follows 

𝑠𝑡 =  (𝑡, 𝑇𝑎,𝑡 , 𝑇𝑟,𝑡 , 𝑇𝑟_𝑠𝑒𝑡,𝑡 , 𝑇𝑚,𝑡 , 𝜋𝑡 , 𝑃𝑡
𝑃𝑉 , 𝑃𝑡

𝑙𝑜𝑎𝑑 , 𝑃𝑡
𝐵𝑎𝑡 , 𝑎𝑡−ℎ:𝑡−1

𝑝ℎ𝑦𝑠 ) 

where 𝑡 is the hour of day, 𝑇𝑎,𝑡, 𝑇𝑟,𝑡, and 𝑇𝑟_𝑠𝑒𝑡,𝑡 are the ambient, room, and user setpoint 

temperatures at time 𝑡, respectively, 𝑇𝑚,𝑡 is the (estimated) mass temperature of the building 

at time 𝑡, 𝜋𝑡 indicates the electricity price at time 𝑡, 𝑃𝑡
𝑃𝑉 and 𝑃𝑡

𝑙𝑜𝑎𝑑 represent the PV generation 

of the household and the non-flexible load consumption, respectively. 𝑎𝑡−ℎ:𝑡−1
𝑝ℎ𝑦𝑠

 represent the 

energy consumed by the heating system in the previous ℎ time steps. 

The agent can take 2 possible actions as follows 

𝑎𝑡 ∈  𝐴, 𝐴 = {0, 𝑃𝑚𝑎𝑥} 

  

where 𝑃𝑚𝑎𝑥 is the maximum electric power of the heat pump. The agent takes an action every 

5 minutes. To meet heat pump constraints, we use a backup controller to override actions that 
violate these constraints. More specifically, the minimum on-time and off-time for all heat 
pumps are 15 minutes and 10 minutes, respectively. 

the reward function is formulated as follows. 

𝑟𝑡 = {
−𝑃𝑡

𝑎𝑔𝑔  𝜋𝑡
𝑏𝑢𝑦 + 𝑃𝐹, 𝑃𝑡

𝑎𝑔𝑔 > 0 

−𝑃𝑡
𝑎𝑔𝑔

 𝜋𝑡
𝑖𝑛𝑗

+ 𝑃𝐹, 𝑃𝑡
𝑎𝑔𝑔

≤ 0
 

𝑃𝑡
𝑎𝑔𝑔  =  𝑃𝑡

𝑙𝑜𝑎𝑑  +  𝑎𝑡∆𝑡 −  𝑃𝑡
𝑃𝑉 

𝑃𝐹 = −(𝑇𝑟_𝑠𝑒𝑡,𝑡 − 𝑇𝑟,𝑡+1)+𝑐1 − (𝑇𝑟,𝑡+1 − 𝑇𝑟_𝑠𝑒𝑡,𝑡)+𝑐2 

where the first term in 𝑟𝑡 calculates the energy cost, while the second term ensures that user 

constraints are satisfied. 𝑐1 and 𝑐2 are hyperparameters used to balance the energy cost 

objective with the user constraints. In our experiments, the user thermal comfort optimization 
will use asymmetrical settings (𝑐1 > 𝑐2), because we want to avoid excessive penalization for 

preheating the room. 

III.1.2.  Physics-informed Neural Network 

To simulate the environment dynamics, we use a model that captures the thermal behavior of 
a building. For this purpose, we employ a physics-informed neural network forecaster, shown 
in Figure 3, to estimate the next building states of the system. The architecture is explained in 
detail in [3]. The model uses an encoder-based neural network to project the most recent 
building states into a compact hidden state, which corresponds to the building’s mass 
temperature in a simple RC model of its thermodynamic behavior. The decoder network then 
uses this hidden state, along with observable states, to predict the next building state. 
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Figure 3 Architecture of the used physics-informed neural network 

 

The physics-informed network was trained offline using historical data from buildings collected 
in February and March 2023. Figure 4 demonstrates the performance of the trained network 
on data from May 2023, showing that the model successfully estimated the next indoor 
temperature.  

 

Figure 4 The performance of the physics-informed model trained on building 1 on test days. 

 

III.1.3.  Monte Carlo Tree Search 

We use Monte Carlo tree search (MCTS) approach to control heat pump and thermal storage. 
The heat pump action is obtained at each time step using MCTS. Figure 5 illustrates an 
overview of MCTS. In MCTS, the possible scenarios that the current state may evolve into are 
represented in a tree structure, modeling subsequent states of the environment as nodes and 
the actions governing transitions between them as edges. The general structure of the MCTS 



D3.1 - Simulation results for flexibility potential on Belgian electricity grid  

FlexMyHeat 10 

algorithm comprises four sequential phases that are repeated iteratively, until an acceptable 
solution is obtained:  

1) Selection: select a node (i.e., a system state) to further explore actions for.  

2) Expansion: expand the tree by adding new node(s), i.e., roll out possible actions from 
that state.  

3) Simulation: evaluate the node value by performing Monte Carlo simulations.  

4) Backpropagation: propagate the information acquired back to the root node. After 
iterating through these phases (“searching”), the tree is used at inference time to select 
the actions based on the node values to maximize them. 

 

 

Figure 5 Monte Carlo tree search framework overview 
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IV. THERMAL STORAGE AND HEAT PUMP CONTROL 

ALGORITHM 

Thermal storage provides an opportunity to store heating energy for later use in space heating, 
reducing the need to activate the heat pump. This section describes our methodology for 
effectively integrating thermal storage with heat pumps. 

IV.1.1.  MDP Formulation 

The control problem is the same as the one explained in Section IV. The observable building 
state at each time step is formulated as follows 

𝑠𝑡 =  (𝑡, 𝑇𝑎,𝑡 , 𝑇𝑟,𝑡 , 𝑇𝑟_𝑠𝑒𝑡,𝑡 , 𝑇𝑚,𝑡 , 𝜋𝑡 , 𝑃𝑡
𝑃𝑉 , 𝑃𝑡

𝑙𝑜𝑎𝑑 , 𝑃𝑡
𝐵𝑎𝑡 , 𝑆𝑂𝐶𝑡

𝑇𝑆 , 𝑎𝑡−ℎ:𝑡−1
𝑝ℎ𝑦𝑠 ) 

where 𝑆𝑂𝐶𝑡
𝑇𝑆 indicates thermal storage state of charge at time 𝑡. 

The agent can take 4 possible pairs of actions as follows 

𝑎𝑡 = (𝑎𝑡
𝐻𝑃, 𝑎𝑡

𝑇𝑆) ∈  𝐴, 𝐴 = {(0,0), (𝑃𝑚𝑎𝑥
𝐻𝑃 , 0), (0, −𝑃𝑚𝑎𝑥

𝑇𝑆 ), (𝑃𝑚𝑎𝑥
𝐻𝑃 , 𝑃𝑚𝑎𝑥

𝑇𝑆 )} 

where 𝑃𝑚𝑎𝑥
𝐻𝑃  and 𝑃𝑚𝑎𝑥

𝑇𝑆  represent the maximum thermal power of the heat pump and thermal 

storage, respectively. Note that the positive thermal storage action means that it is charged 
and the negative one means that it is discharged. Similar to Section IV, a backup controller is 
used to override actions and prevent violations of the heat pump and thermal storage 
constraints. The heat pump constraints are explained in Section IV, and the thermal storage 
SoC is limited to 0%, 50% (one cell fully charged), or 100% (both cells fully charged), 
prioritizing longevity through a 50-50 cell capacity distribution. 

The reward function is defined similar to Section IV. 

Thermal storage is controlled using the trained physics-informed neural network and MCTS, 
similar to the approach used for heat pump control. 
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V. MULTI-ASSET SMART CONTROL 

To unlock the full potential of all flexible assets, we control them simultaneously. For this 
purpose, heat pumps and thermal storage are controlled using MCTS, as explained in Section 
IV, while the battery is controlled using RL, described in detail in Section D.2.1. Since the time 
resolution of battery control is one hour, the RL agent determines the battery action every hour. 
The heat pumps and thermal storage are controlled every 5 minutes, taking into account the 
battery's action and the household's net consumption. 
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VI. RESULTS 

In this section, the performance of the proposed data-driven controllers for heat pumps, 
thermal storage, and multiple assets is evaluated. A similar case study as detailed in 
Deliverable D.1.1 was used, involving 120 households equipped with PV installations across 
five different locations in Belgium. To study the impact of user comfort on flexibility, we consider 
three different temperature deadbands for the user temperature setpoint: users do not allow 
any deviation from the setpoint, allow at most a 0.5 ℃ deviation, or allow at most a 1 ℃ 

deviation. We investigate the case study under two different price schemes: bi-hourly tariff and 
dynamic day-ahead prices. In bi-hourly tariff there is two different tariffs for peak and off-peak 
hours that are calculated based on average day-ahead prices of that hours on that month. 

VI.1.  Heat Pump Smart Control Results 

Table 1 presents the average annual electricity costs of households with heat pumps under 
different control strategies. Our proposed controller reduced the electricity cost by 13.22% and 
10.23% compared to the business-as-usual controller. As expected, allowing a wider 
temperature deadband provides greater flexibility and cost reductions. 

 

Table 1 Overview of the average annual electricity bill in 2030 for heat pump control 

Price Scheme RBC 
Smart Control 

Flexibility 0.5 ℃ Flexibility 1 ℃ 

Day-ahead 1170.75 € 1087.89 € 1015.9 € 

Bi-hourly tariff  1118.1 € 1058.7 € 1003.7 € 

 

Figure 6 illustrates the average monthly electricity bill of households based on day-ahead 
prices. The results show that the proposed method consistently reduces the energy costs of 
households. 

 

Figure 6 Average household monthly electricity bill in 2030 
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The average daily peak power of households with heat pumps is shown in Figure 7. In the 
base scenario, the households have no flexible asset. On average, the smart controller 
reduces peak power by 9.4% and 13.3% for 0.5 ℃ and 1 ℃ deadbands, respectively, compared 

to the rule-based controller. 

 

Figure 7 Average daily peak power spread for households with heat pumps 

To better interpret the control logic of the proposed method, heat pump actions for an example 
day, are demonstrated in Figure 8. In this case, the user temperature flexibility is 1℃. The 

backbone of the smart strategy is preheating, where the controller starts the heat pump earlier 
to preheat the building when prices are low. Since the temperature setpoint of the house 
increases at 5:00 and 15:45, the agent turns on the heat pump about two hours earlier to heat 
the household at a lower cost while ensuring user satisfaction. However, between 16:30 and 
18:30, when the price is high, the agent must use the heat pump due to the high temperature 
setpoint. In this case, using thermal storage can help avoid operating the heat pump during 
the evening. 

 

Figure 8 heat pump control actions for an example day 
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VI.2.  Thermal Storage and Heat Pump Smart Control 
Results 

the average annual electricity costs of households with heat pumps and thermal storage under 
different control strategies is shown in Table 2. Controlling the heat pump and thermal storage 
simultaneously could decrease the electricity cost by 29.78% and 26.05% compared to the 
business-as-usual controller. Comparing the results with those in Table 1 indicates that 
controlling the thermal storage reduced the cost by 19.1% and 17.6% under different pricing 
schemes. 

 

Table 2 Overview of the average annual electricity bill in 2030 for heat pump and thermal 
storage control 

Price Scheme RBC 
Smart Control 

Flexibility 0.5 ℃ Flexibility 1 ℃ 

Day-ahead 1170.75 € 850.04 € 822.08 € 

Bi-hourly tariff  1118.1 € 828.3 € 826.8 € 

 

The average monthly electricity bill of households exposed to day-ahead prices is 
demonstrated in Figure 9. The results indicate a significant and consistent reduction in their 
monthly costs, demonstrating that the proposed smart control is not biased toward any specific 
season or month and is a generalizable method. 

 

Figure 9 Average household monthly electricity bill in 2030 with heat pumps and thermal 
storage 

 

Figure 10 illustrates the average daily peak power of households equipped with heat pumps 
and thermal storage. On average, the smart controller lowers peak power by 22.7% and 24.3% 
for deadbands of 0.5 ℃ and 1 ℃, respectively, compared to the rule-based controller. 

Moreover, compared to the scenario with only heat pumps shown in Figure 7, controlling 
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thermal storage could further reduce the average peak power by 14.68% and 12.7% for 
deadbands of  0.5 ℃ and 1 ℃, respectively. 

 

Figure 10 Average daily peak power spread for households with heat pumps and thermal 
storage 

 

In this scenario as shown in Figure 11, the smart controller follows the same control logic 
described in Figure 8. Thermal storage is charged when the price is low and discharged when 
the price is high and heating is needed such as between 4:30 and 5:30. 

 

Figure 11 heat pump and thermal storage control actions for an example day 
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VI.3.  Multi-asset Smart Control Results 

VI.3.1.  Prioritize electric battery over thermal storage 

The average annual electricity costs of households with all flexible assets under different 
control strategies is shown in Table 3. Based on the results, controlling all flexible assets can 
reduce the average electricity cost of households by 35.1% and 29.9% compared to the 
scenario in which the heat pumps strictly follow the temperature setpoint. 

 

Table 3 Overview of the average annual electricity bill in 2030 for battery, heat pump and 
thermal storage control 

Price Scheme RBC 
Smart Control 

Flexibility 0.5 ℃ Flexibility 1 ℃ 

Day-ahead 1170.75 € 784.23 € 760.12 € 

Bi-hourly tariff  1118.1 € 791.33 € 783.92 € 

 

Figure 12 shows the average monthly electricity bill of households exposed to day-ahead 
prices. The results indicate that during April, May, September, and October, when heating is 
not needed, the energy cost reduction is primarily due to smart battery control. However, during 
the other months, the smart control of both the heat pump and thermal storage plays the major 
role in reducing costs. 

 

Figure 12 Average household monthly electricity bill in 2030 with battery, heat pumps and 
thermal storage 

 

Figure 13 shows the average daily peak power of households with battery, heat pumps and 
thermal storage. Smart control of all flexible assets results in a peak power reduction of 24.8% 
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and 26% for deadbands of 0.5 ℃ and 1 ℃, respectively, compared to the business-as-usual 

control of heat pumps. 

 

Figure 13 Average daily peak power spread for households with battery, heat pumps and 
thermal storage 

 

VI.3.2.  Prioritize thermal storage over electric battery 

Table 4 indicates the average annual electricity costs of households for control strategies that 
prioritize thermal storage charging over electric battery charging. The results show 
approximately a 1% cost reduction compared to control strategies that prioritize electric battery 
charging over thermal storage charging. This is because the battery can more effectively adapt 
to the operational profile of the heat pump and thermal storage system. 

 

Table 4 Overview of the average annual electricity bill in 2030 for battery, heat pump and 
thermal storage control 

Price Scheme RBC 
Smart Control 

Flexibility 0.5 ℃ Flexibility 1 ℃ 

Day-ahead 1170.75 € 775.92 € 751.34 € 

Bi-hourly tariff  1118.1 € 782.36 € 774.84 € 

 

"The average daily peak power of households under control strategies that prioritize thermal 
storage charging over electric battery charging is illustrated in Figure 14 Average daily peak 
power spread for households with battery, heat pumps and thermal storage. Coordinated 
control of all flexible assets leads to an approximate 20% reduction in peak power demand 
compared to the conventional control of heat pumps. However, compared to the results in 
Section VI.3.1, these control strategies achieve a slightly smaller reduction in peak power. This 
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is because, on sunny days, both thermal storage and batteries are charged to maximize the 
use of PV, which leads to higher peak power. 

 

 

Figure 14 Average daily peak power spread for households with battery, heat pumps and 
thermal storage 
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VII. CONCLUSION AND NEXT STEPS 

The results show that simultaneously controlling all flexible assets — including the battery, 
heat pump, and thermal storage — can significantly reduce the impact of heat pumps on 
residential loads. The smart control of these assets can reduce the average peak power by 
24.8% and 26% for deadbands of 0.5 ℃ and 1 ℃, respectively, compared to the business-as-

usual control of heat pumps. The smart control of all assets results in a 35.1% reduction in the 
electricity bill compared to a scenario in which heat pumps strictly follow the user-defined 
temperature setpoint. The results reveal that the cost reduction during warm months is 
primarily due to smart battery control, while during cold months, it is mainly achieved because 
of the control of the heat pump and thermal storage. 
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