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I. INTRODUCTION 

The FlexMyHeat project aims at understanding the role that heat pumps and decentralized 
storage solutions will play in 2030 and 2050 as a source of flexibility for the national electricity 
system.  

The extra need for electricity by shifting from fossil fuel based heating systems to heat pumps 
in the upcoming years will increase peak loads in the Belgian electricity grids (on top of 
increased peak loads caused by other domains that get electrified such as mobility and 
industry) and will thus lead to challenges with respect to the energy security of supply, the net 
balance and (on a more local level) to congestion of the grid infrastructure. 

 
However, by properly controlling these heat pumps in combination with local storage solutions, 
unlocking the available flexibility, this challenge can be turned into an opportunity for the grid, 
contributing to the national and regional balance of the Belgian electricity system. 
 
The goal of FlexMyHeat is to quantitatively analyze the impact and value of the increased 
deployment of heat pumps and decentralized electrical/thermal storage in 2030 and 2050 on 
the Belgian electricity system, including proposed control/coordination strategies at (a 
combination of) various timescales, ranging from day-ahead markets to imbalance markets.  
 
This quantitative assessment is performed for different scenarios: 

• Business-as-usual: considering the heat pumps and possibly associated local storage 
as independent devices, only optimized for local objectives, i.e., maximizing PV self-
consumption. Thus, no dynamic interaction from the grid side to exploit their flexibility. 

• Individual smart control: optimized control of the flexibility opportunities offered by the 
heat pump or storage devices individually, so assuming that any other devices are only 
optimized for PV self-consumption maximization. 

• Integrated smart control: combined optimization of both the heat pump and storage 
devices for local and market objectives  
 

D1.1 focused on the business-as-usual scenarios while this deliverable focuses on the 
individual smart control assessment of battery systems. Finally, D3.1 will present the results 
of the individual smart control of heat pumps and thermal storage systems, and the results for 
the integrated smart control scenarios. 

 

This deliverable is structured as follows: 

• Section II describes the Reinforcement Learning (RL) based control algorithms for 
controlling a home battery for day-ahead and imbalance markets. 

• Section III describes the results on energy cost reduction and peak load reduction for 
the two analyzed markets, and analyzes the consumption patterns of the battery 
storage, heat pump and thermal storage. 

• Finally, in Section IV, we provide our conclusions and describe next steps. 
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II. BATTERY SMART CONTROL ALGORITHMS 

As we discussed in the previous deliverable, a simple rule-based controller cannot fully unlock 
the potential for flexible assets. In this section, we introduce our data-driven controllers for 
batteries to participate in two electricity markets, i.e., day-ahead market and imbalance 
settlement mechanism. 

II.1.  Day-ahead Market 

Controlling batteries unlocks multiple value streams—such as boosting household self-
consumption, reducing energy bills, and participating in grid services—maximizing both 
economic and environmental benefits. However, developing an optimal controller for batteries 
in home energy management systems (HEMS) is a challenging task due to the involvement of 
sequential decision-making under uncertainties caused by PV generation and household 
consumption, including heat pump consumption. We use a reinforcement learning-based 
controller to deal with these uncertainties, where the agent learns a (near-)optimal policy by 
interacting with its environment [1]. 

II.1.1.  MDP Formulation 

We formulate the home energy management problem as a Markov decision process (MDP) to 
minimize the daily energy cost of households by managing the (dis)charging of their home 
battery [2]. At each step, the state for each household is determined as follows 

𝑠𝑡 =  (𝑡, 𝑆𝑂𝐶𝑡 , 𝜋𝑡 , 𝑃𝑡
𝑃𝑉 , 𝑃𝑡

𝑙𝑜𝑎𝑑 , 𝑃𝑡
𝐻𝑃) 

where 𝑡 is the hour of day, 𝑆𝑂𝐶𝑡  shows the state of charge (SoC) of the battery at time 𝑡, 𝜋𝑡 

indicates the electricity price at time 𝑡, 𝑃𝑡
𝑃𝑉, 𝑃𝑡

𝑙𝑜𝑎𝑑, and 𝑃𝑡
𝐻𝑃 represent the PV generation of the 

household, the non-flexible load consumption, and the heat pump consumption, respectively. 

The agent can take one of the 5 possible discretized actions as follows 

𝑎𝑡 ∈  𝐴, 𝐴 = {−𝑃𝑚𝑎𝑥 , −
𝑃𝑚𝑎𝑥
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where 𝑃𝑚𝑎𝑥 is the maximum (dis-)charging power of the battery. The agent makes a decision 

every hour. 

Since the RL agent aims to maximize the total reward, the reward function is defined as the 
negative of the energy cost, as shown below. 

𝑟𝑡 = {
−𝑃𝑡

𝑎𝑔𝑔
 𝜋𝑡

𝑏𝑢𝑦
, 𝑃𝑡

𝑎𝑔𝑔
> 0 

−𝑃𝑡
𝑎𝑔𝑔

 𝜋𝑡
𝑖𝑛𝑗

, 𝑃𝑡
𝑎𝑔𝑔

≤ 0
 

𝑃𝑡
𝑎𝑔𝑔

 =  𝑃𝑡
𝑙𝑜𝑎𝑑  +  𝑃𝑡

𝐻𝑃  +  𝑎_𝑡 − 𝑃𝑡
𝑃𝑉 

We consider that households are exposed to the day-ahead market and the injection offtake 
prices are calculated based on the price formula for the dynamic price contract. 

II.2.  Imbalance Settlement Mechanism 

To help maintain the grid balance, transmission system operators (TSOs) outsource part of 
the required corrective balancing actions to balance responsible parties (BRPs). At the end of 
each imbalance settlement period (ISP), unbalanced BRPs are exposed to an imbalance price, 
calculated based on the total system imbalance to penalize deviations against the system 
balance. In certain European countries, e.g., Belgium, BRPs can also be remunerated if their 
unbalanced portfolio contributes to restoring grid balance, i.e., if their deviation is opposite to 
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the direction of the system imbalance. However, performing implicit balancing is challenging, 
as it involves risks mainly stemming from the volatility of imbalance prices and prediction errors 
in RES production. The fact that the imbalance price is calculated at the end of the 15-minute 
period means there is uncertainty for BRPs regarding the price they can get by deviating from 
their nomination to help balancing the grid. Hence, the activation of flexibility by BRPs will take 
place if they estimate with enough confidence that the final imbalance price will be greater than 
their activation costs, by monitoring closely the near-real-time imbalance data published by the 
TSO, namely Elia in Belgium. 

II.2.1.  MDP Formulation 

The implicit balancing strategy we propose aims to optimize the imbalance cost of the BRP by 
controlling battery actions. To this end, we model the problem as a MDP and solve it as a 
stochastic sequential decision-making problem [3].  

The state at each time step is expressed as 

𝑠𝑡 =  (𝑇𝑞ℎ , 𝑞ℎ, 𝑚𝑜, 𝑆𝑂𝐶𝑡 , �̂�𝑡
𝑖𝑚𝑏) 

where 𝑇𝑞ℎ ∈ [0,14] is the minute of the quarter hour, 𝑞ℎ ∈ [0,95] is the quarter hour of the day, 

𝑚𝑜 ∈ {1,2, … ,12} represents the month of the year, and �̂�𝑡
𝑖𝑚𝑏 is the indicative imbalance price 

of the current quarter-hour. Indicative prices are minute-based prices published by Elia in real-
time, based on the latest grid situation, providing more information to BRPs. Since the actual 
imbalance prices are calculated ex-post, our agent can only make decisions based on these 
indicative imbalance prices. 

The action space includes 3 possible actions as follows 

𝑎𝑡 ∈  𝐴, 𝐴 = {−𝑃𝑚𝑎𝑥 , 0, 𝑃𝑚𝑎𝑥} 

Since the RL agent aims to maximize arbitrage revenue, the reward function is defined as the 
negative of the imbalance cost, as below 

𝑟𝑡 = −𝑎𝑡𝜋𝑞ℎ
𝑖𝑚𝑏∆𝑡 

System dynamics in RL are modeled using a state transition probability function. The battery 
dynamics form part of the system dynamics in our problem, which we explicitly formulate using 
a battery linear model with a constant round-trip efficiency for (dis)charging. However, the 
transition function is primarily unknown, due to dependency on uncertainties in imbalance 
prices, regulation state, weather, and wind forecast error. By interacting with the environment, 
the RL agent can implicitly learn the transition function and these uncertainties. 

II.3.  Reinforcement Learning 

We will solve the formulated MDP problems using RL methods. Recently, RL, as a model-free 
method, has attracted researchers’ attention due to its remarkable performance in solving 
complex sequential decision-making problems such as playing games, robotic control, and 
autonomous driving. RL aims to learn a policy that maximizes the expected long-term reward. 
We focused on policy gradient RL methods where the policy is directly learned by an actor 
network. Among existing policy gradient methods, we choose soft actor-critic (SAC) for its 
superior sample efficiency and stability [4]. 

In this policy gradient-based method, the policy is learned by an actor network 𝜋𝜑 and the Q-

function is approximated by a critic network 𝑄𝜃. The goal of the actor is to maximize the 

expected reward as well as maximize the entropy of the actor to encourage the agent to further 
explore the environment. The loss function of the actor network (𝐽𝜋) is defined as 

𝐽𝜋(𝜑) = 𝔼𝑠~𝜌𝜋 ,𝑎~𝜋𝜑
[𝛼 ln 𝜋𝜑(𝑎|𝑠) − 𝑄𝜃(𝑠, 𝑎)] 

The critic network estimates the soft Q-value values. The loss function of the critic network 
(𝐿𝑄) is calculated as follows. 
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𝐿𝑄(𝜃) = 𝔼(𝑠𝑡,𝑎𝑡)~𝐷[(𝑄𝜃(𝑠𝑡 , 𝑎𝑡) − 𝑦𝑡)2] 

𝑦𝑡 = 𝑟(𝑠𝑡 , 𝑎𝑡) + 𝛾𝔼𝑎𝑡+1~𝜋𝜑
[𝑄𝜃′(𝑠𝑡+1, 𝑎𝑡+1) − 𝛼 ln 𝜋𝜑(𝑎𝑡+1|𝑠𝑡+1)] 

𝑦𝑡 is an estimated soft-Q value that is calculated by a modified Bellman equation (soft Bellman 

equation). In this step, the target value for the Q function is computed according to the 
maximum entropy objective. For calculating the target value for training the 𝑄𝜃 network, using 
the same network can be prone to divergence in 𝑄𝜃 updates. To solve this problem, another 

Q network is defined and parametrized by 𝜃′. After each episode when 𝑄𝜃 is updated, the 
parameters of 𝑄𝜃′ are updated according to the following equation with 𝜏 ≪ 1 to slowly track 

the learned network. 

𝜃′ = 𝜏𝜃 + (1 − 𝜏)𝜃′ 
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III. RESULTS 

This section aims to study the impact of applying the proposed battery controller in 2030 while 
heat pumps and thermal storage are controlled using rule-based business-as-usual control 
logic, thus only optimizing the self-consumption of local PV power. We used a similar case 
study to the one described in detail in deliverable D.1.1, i.e., 120 households across five 
different locations in Belgium with a PV installation. 

The smart control scenarios are defined the same as the business-as-usual scenarios to be 
able to compare with as follows: 

• Base scenario: base load with PV without any flexible asset 

• Scenario 1: base scenario with battery 

• Scenario 2: base scenario with battery and heat pump 

• Scenario 3: base scenario with battery, heat pump, and thermal storage 

 

III.1.  Day-ahead Market 

The results of controlling household batteries in the day-ahead market are summarized in 
Table 1. The smart control of batteries reduced the annual electricity bill on average by 3.26%, 
4.88%, and 2.13% compared to the rule-based control logic in Scenarios 1, 2, and 3, 
respectively. Figure 2 explains the reason for this cost reduction. In the rule-based controller, 
the battery begins charging as soon as there is excess PV generation, leading to it being fully 
charged before the afternoon. As a result, peak battery consumption occurs in the morning. 
This means the household will miss the opportunity to charge the battery during the cheaper 
hours around early afternoon. In other words, the excess PV will be sold at lower prices. 
However, the RL agent charges the batteries around early afternoon, when the price is 
cheaper. In addition, the batteries will be charged more during cheap hours to avoid purchasing 
electricity from the grid in the evening when the price is more expensive. Average monthly 
electricity bills, shown in Figure 1, demonstrate that the benefit of using the RL agent is not 
limited to a certain month/season for an average household with the annual electricity 
consumption of 2653 kWh. The RL agent provides a constant cost reduction over the rule-
based controller. It is worth mentioning that the model was trained on 2023 data, which 
contained fewer instances of negative prices. However, with negative prices now occurring 
more frequently during the spring and summer, it is important to train season-specific or even 
month-specific models to better address this issue. 

 

Table 1 Overview of the average annual electricity bill in 2030 for the day-ahead market 

Control 
Logic 

Base (€) S 1 (€) S 2 (€) S 3 (€) 

RBC 557.34 370.56 835.45 837.69 

RL 557.34 383.04 878.29 856 
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Figure 1 Average household monthly electricity bill in 2030 

 

To better understand the contribution of each asset to the cost reduction, the average energy 
consumption of each asset during winter is shown in Figure 2. The battery consumption profile 
exhibits two main peaks: one in the early morning when electricity prices are low, and another 
around noon when PV generation is high. The thermal storage is charged during hours with 
an excess of PV to avoid selling to the grid and to maximize self-consumption. In the evening, 
when space heating is needed, the thermal storage is used first. This explains the dip in the 
heat pump profile around 17:00. Once the heat pumps begin operating for space heating and 
the thermal storage is completely empty, the batteries start discharging to supply the heat 
pumps with electricity. 
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Figure 2 Contribution of different assets for scenario 3 in different seasons of 2030 

  

Figure 3 shows the effect of the smart controller on the daily peak power reduction. Based on 
the results, by adopting the smart control logic, the trained RL agent can reduce the daily peak 
power on average by 11.5% and 5.6% compared to the base and rule-based controller cases. 

 

Figure 3 Average daily peak power spread for scenario 3 

 

III.2.  Imbalance Market Results 

Table 2 also shows the impact of controlling the batteries for the imbalance market, on the 
average annual electricity bill of households. The results are presented for different household 
revenue-sharing rates, ranging from 20% to 40%. The remaining profit will be shared among 
other stakeholders involved, such as balance responsible parties (BRPs) — for participating in 
the market and managing portfolios —, energy suppliers — for providing customer contracts 
—, etc. According to the results, the households can decrease their annual electricity cost by 
367.8€ with a 20% revenue-sharing rate. The battery consumes an average of 5.7 cycles per 
day. Figure 4 shows the control logic of the RL agent in the imbalance market. If the imbalance 
price is lower than -200€, the agent charge batteries. At very high prices (above 600€), the 
agent always discharges the batteries. When the price is between -200€ and 600€, the agent 
decision depends on the battery state of charge (SoC).  When the SoC is low, the agent 
becomes more conservative with discharging. This ensures that the battery is not completely 
depleted, reserving some energy for future arbitrage opportunities. 

 

Table 2 Overview of the average annual electricity bill in 2030 for the imbalance market 

revenue-
sharing rate    

Control 
Logic 

Base (€) S 1 (€) S 2 (€) S 3 (€) 

0% No control 557.34 557.34 1073.22 1018.02 
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20% RL 557.34 189.59 705.47 650.27 

30% RL 557.34 5.72 521.60 466.40 

40% RL 557.34 -178.15 337.73 282.53 

 

 

Figure 4 Control logic of 3kW/ 5kWh battery in imbalance market  

 

III.3.  Social welfare 

The mechanism of imbalance market relies on the following principle: 

• The TSO (Elia) receives bids for aFRR (automatic Frequency Restoration Reserve) for 
each quarter. Those bids are made by electricity producers or big industrial players 
who sell their flexibility upward or downward at a certain price. 

• In order to unleash an even larger flexibility potential, the TSO created the imbalance 
market, which allows the Balance Responsible Parties (BRP) to deviate from their 
equilibrium position if that helps maintaining the grid in balance. The BRPs are 
incentivised thanks to a price signal, i.e. the imbalance market price, which is published 
in near-real-time on the TSO open data platform. 

• When a BRP decides to activate some flexible assets in order to deviate from his 
allocation for the quarter, which effectively helped the grid, he will be rewarded at the 
imbalance market price, which follows a formula based on the aFRR marginal price 
during that quarter, but that is strictly lower than the aFRR price. The reason behind 
this is that the action of the BRP has avoided the need to recourse to aFRR provider. 
As a result, when a BRP reacted to an imbalance market price by activating upward or 
downward volumes, he is basically helping to maintain the power grid at a lower cost 
than it would have been with an aFRR provider.  

We call this "social welfare" as it reduces grid balancing costs. The TSO (Elia) is 
paying the BRP but then passes on this cost to all unbalanced BRPs during the quarter 
- not those who are unbalanced in a way that helped the grid. These costs are generally 
passed on to final consumers, hence social welfare implies lower balancing costs for 
the final consumers, which are citizens and companies. 
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• The BRP will then share his imbalance revenue with the other stakeholders that were 
involved: 

o The asset owner for the use of his asset 

o The Flexibility Service Provider (FSP) for the aggregation of assets and 
contracting with asset owners 

 

As a result, the mechanism of imbalance market generates two types of revenues: 

o Imbalance revenues - which are shared among the BRP, the FSP and the asset owner 

o Social welfare, which is very complex to quantify, and consists of: 

• Lower balancing costs passed on to final consumers 

• Capacity Reserve Mechanism (CRM) costs savings, i.e. the mechanism 
through which the TSO can conclude capacity contracts to ensure the security 
of power supply in Belgium. Bidders offer their availability to produce when 
needed. 

In its Adequacy & Flexibility study of June 2025, ELIA has estimated that by 2036, end-user 
flexibility can deliver €350 to €500 million in annual savings, with about €260 million from 
balancing savings, and between €90 and €260 million from CRM-related savings. These social 
welfare estimates encompass not only batteries, but also change in consumers behaviours, 
but nonetheless they show a significant savings potential by leveraging end-user flexibility. 
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IV. CONCLUSION AND NEXT STEPS 

The results conclude that smart battery control provides greater electricity cost reduction 
compared to the rule-based controller. The results of participating in the day-ahead and 
imbalance markets indicate that controlling the battery in the imbalance market is more 
profitable for households, despite its higher uncertainty and greater complexity. 

The next step is to study the impact of smart control for heat pumps and thermal storage. 
Additionally, developing a multi-asset controller to manage flexible assets simultaneously will 
help optimize electricity cost reduction and peak power management.   
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